Tensorflow源码解析1

Easter79
• 阅读 992

1 主流深度学习框架对比

当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研发,以便能占领市场。当前的框架有数十种之多,主流的如下(截止到2018年11月)

Tensorflow源码解析1

显然TensorFlow是独一无二的王者。第二名Keras,它是对TensorFlow或Theano接口的二次封装,严格意义上并不是一个独立的深度学习框架。TensorFlow目前也已经集成了Keras,使得安装了TensorFlow的用户就可以直接使用Keras了。

TensorFlow之所以能够从数十种框架中脱颖而出,主要优点有

  1. 出身高贵,是谷歌出品的。但其他很多框架出身也不差,例如PyTorch之于Facebook,MXNET之于Amazon
  2. 2015年就开源了,比较早的俘获了一大批开发者。这个确实是tf的一大先发优势,但PyTorch的前身Caffe,以及MXNET开源时间都不晚,而且Caffe流行时间比tf早,后来才被赶超的。更有Theano这样的绝对老前辈。由此可见,软件开源是多么重要。目前流行的深度学习框架也基本都开源了。
  3. 支持的开发语言多,支持Python Java Go C++等多种流行语言。相比某些框架,确实是优势很大。相比MXNET则小巫见大巫了。MXNET早期发展的一个主要方向就是前端多语言的支持,连MATLAB R Julia等语言都支持了。
  4. 运行效率高。早期的时候,其实tf的运行效率比很多框架都要低一些的。
  5. 安装容易,用户上手快,文档齐全,社区活跃。这个是tf的一个较大优势,特别是社区方面,也就是我们常说的生态优势。互联网头部集中效应十分明显,体现在开源软件上也是一样。这也是我认为最大的一个优势。

总结起来,TensorFlow虽然每个方面都不是绝对领先的优势,但贵在每个方面都做的不错,因此最终能够一骑绝尘,独领风骚。

学习Tensorflow框架内核,可以理解前端接口语言的支持,session生命周期,graph的构建、分裂和执行,operation的注册和运行,模块间数据通信,本地运行和分布式运行模式,以及CPU GPU TPU等异构设备的封装支持等。学习这些,对于模型的压缩 加速 优化等都是大有裨益的。

2 TensorFlow系统架构

TensorFlow设计十分精巧,基于分层和模块化的设计思想进行开发的。框架如下图

Tensorflow源码解析1

整个框架以C API为界,分为前端和后端两大部分。

  1. 前端:提供编程模型,多语言的接口支持,比如Python Java C++等。通过C API建立前后端的连接,后面详细讲解。

  2. 后端:提供运行环境,完成计算图的执行。进一步分为4层

    1. 运行时:分为分布式运行时和本地运行时,负责计算图的接收,构造,编排等。
    2. 计算层:提供各op算子的内核实现,例如conv2d, relu等
    3. 通信层:实现组件间数据通信,基于GRPC和RDMA两种通信方式
    4. 设备层:提供多种异构设备的支持,如CPU GPU TPU FPGA等

模型构造和执行流程

TensorFlow的一大特点是,图的构造和执行相分离。用户添加完算子,构建好整图后,才开始进行训练和执行,也就是图的执行。大体流程如下

  1. 图构建:用户在client中基于TensorFlow的多语言编程接口,添加算子,完成计算图的构造。
  2. 图传递:client开启session,通过它建立和master之间的连接。执行session.run()时,将构造好的graph序列化为graphDef后,以protobuf的格式传递给master。
  3. 图剪枝:master根据session.run()传递的fetches和feeds列表,反向遍历全图full graph,实施剪枝,得到最小依赖子图
  4. 图分裂:master将最小子图分裂为多个Graph Partition,并注册到多个worker上。一个worker对应一个Graph Partition。
  5. 图二次分裂:worker根据当前可用硬件资源,如CPU GPU,将Graph Partition按照op算子设备约束规范(例如tf.device('/cpu:0'),二次分裂到不同设备上。每个计算设备对应一个Graph Partition。
  6. 图运行:对于每一个计算设备,worker依照op在kernel中的实现,完成op的运算。设备间数据通信可以使用send/recv节点,而worker间通信,则使用GRPC或RDMA协议。

Tensorflow源码解析1

3 前端多语言实现 - swig包装器

TensorFlow提供了很多种语言的前端接口,使得用户可以通过多种语言来完成模型的训练和推断。其中Python支持得最好。这也是TensorFlow之所以受欢迎的一大原因。前端多语言是怎么实现的呢?这要归功于swig包装器。

swig是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。在TensorFlow使用bazel编译时,swig会生成两个wrapper文件

  1. pywrap_tensorflow_internal.py:对接上层Python调用
  2. pywrap_tensorflow_internal.cc:对接底层C API调用。

pywrap_tensorflow_internal.py 模块被导入时,会加载_pywrap_tensorflow_internal.so动态链接库,它里面包含了所有运行时接口的符号。而pywrap_tensorflow_internal.cc中,则注册了一个函数符号表,实现Python接口和C接口的映射。运行时,就可以通过映射表,找到Python接口在C层的实现了。

Tensorflow源码解析1

4 tensorflow 源码结构

TensorFlow源码基本也是按照框架分层来组织文件的。如下

Tensorflow源码解析1

其中core为tf的核心,它的源码结构如下

Tensorflow源码解析1

5 总结

TensorFlow框架设计精巧,代码量也很大,我们可以从以下部分逐步学习

  1. TensorFlow内核架构和源码结构。先从全局上对框架进行理解。
  2. 前后端连接的桥梁--Session,重点理解session的生命周期,并通过相关源码可以加深理解Python前端如何调用底层C实现。
  3. TensorFlow核心对象—Graph。图graph是TensorFlow最核心的对象,基本都是围绕着它来进行的。graph的节点为算子operation,边为数据tensor。
  4. TensorFlow图的节点 -- Operation。operation是图graph的节点,承载了计算算子。
  5. TensorFlow图的边 -- Tensor。Tensor是图graph的边,承载了计算的数据。
  6. TensorFlow本地运行时。
  7. TensorFlow分布式运行时。和本地运行时有一些共用的接口,但区别也很大。
  8. TensorFlow设备层。主要了解设备层的定义规范,以及实现。
  9. TensorFlow队列和并行运算。
  10. TensorFlow断点检查checkpoint,模型保存Saver,以及可视化tensorboard。这三个为TensorFlow主要的工具。

原文链接

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Wesley13 Wesley13
3年前
PPDB:今晚老齐直播
【今晚老齐直播】今晚(本周三晚)20:0021:00小白开始“用”飞桨(https://www.oschina.net/action/visit/ad?id1185)由PPDE(飞桨(https://www.oschina.net/action/visit/ad?id1185)开发者专家计划)成员老齐,为深度学习小白指点迷津。
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
Easter79
Easter79
Lv1
今生可爱与温柔,每一样都不能少。
文章
2.8k
粉丝
6
获赞
1.2k