Redis——由分布式锁造成的重大事故

Stella981
• 阅读 563

Redis——由分布式锁造成的重大事故

作者:浪漫先生 

链接:https://juejin.im/post/6854573212831842311

前言

基于Redis使用分布式锁在当今已经不是什么新鲜事了。本篇文章主要是基于我们实际项目中因为redis分布式锁造成的事故分析及解决方案。

背景:我们项目中的抢购订单采用的是分布式锁来解决的。有一次,运营做了一个飞天茅台的抢购活动,库存100瓶,但是却超卖了!要知道,这个地球上飞天茅台的稀缺性啊!!!事故定为P0级重大事故...只能坦然接受。整个项目组被扣绩效了~~事故发生后,CTO指名点姓让我带头冲锋来处理,好吧,冲~

事故现场

经过一番了解后,得知这个抢购活动接口以前从来没有出现过这种情况,但是这次为什么会超卖呢?

原因在于:之前的抢购商品都不是什么稀缺性商品,而这次活动居然是飞天茅台,通过埋点数据分析,各项数据基本都是成倍增长,活动热烈程度可想而知!话不多说,直接上核心代码,机密部分做了伪代码处理。。。

public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) { SeckillActivityRequestVO response;     String key = "key:" + request.getSeckillId;     try {         Boolean lockFlag = redisTemplate.opsForValue().setIfAbsent(key, "val", 10, TimeUnit.SECONDS);         if (lockFlag) {             // HTTP请求用户服务进行用户相关的校验             // 用户活动校验                          // 库存校验             Object stock = redisTemplate.opsForHash().get(key+":info", "stock");             assert stock != null;             if (Integer.parseInt(stock.toString()) <= 0) {                 // 业务异常             } else {                 redisTemplate.opsForHash().increment(key+":info", "stock", -1);                 // 生成订单                 // 发布订单创建成功事件                 // 构建响应VO             }         }     } finally {         // 释放锁         stringRedisTemplate.delete("key");         // 构建响应VO     }     return response; }

以上代码,通过分布式锁过期时间有效期10s来保障业务逻辑有足够的执行时间;采用try-finally语句块保证锁一定会及时释放。业务代码内部也对库存进行了校验。看起来很安全啊~  别急,继续分析。。。

事故原因

飞天茅台抢购活动吸引了大量新用户下载注册我们的APP,其中,不乏很多羊毛党,采用专业的手段来注册新用户来薅羊毛和刷单。

当然我们的用户系统提前做好了防备,接入阿里云人机验证、三要素认证以及自研的风控系统等各种十八般武艺,挡住了大量的非法用户。此处不禁点个赞~

「但也正因如此,让用户服务一直处于较高的运行负载中。」

抢购活动开始的一瞬间,大量的用户校验请求打到了用户服务。导致用户服务网关出现了短暂的响应延迟,有些请求的响应时长超过了10s,但由于HTTP请求的响应超时我们设置的是30s,这就导致接口一直阻塞在用户校验那里,10s后,分布式锁已经失效了,此时有新的请求进来是可以拿到锁的,也就是说锁被覆盖了。

这些阻塞的接口执行完之后,又会执行释放锁的逻辑,这就把其他线程的锁释放了,导致新的请求也可以竞争到锁~这真是一个极其恶劣的循环。

这个时候只能依赖库存校验,但是偏偏库存校验不是非原子性的,采用的是get and compare 的方式,超卖的悲剧就这样发生了~~~

事故分析

仔细分析下来,可以发现,这个抢购接口在高并发场景下,是有严重的安全隐患的,主要集中在三个地方:

  • 「没有其他系统风险容错处理」由于用户服务吃紧,网关响应延迟,但没有任何应对方式,这是超卖的导火索。

  • 「看似安全的分布式锁其实一点都不安全」虽然采用了set key value [EX seconds] [PX milliseconds] [NX|XX]的方式,但是如果线程A执行的时间较长没有来得及释放,锁就过期了,此时线程B是可以获取到锁的。当线程A执行完成之后,释放锁,实际上就把线程B的锁释放掉了。这个时候,线程C又是可以获取到锁的,而此时如果线程B执行完释放锁实际上就是释放的线程C设置的锁。这是超卖的直接原因。

  • 「非原子性的库存校验」非原子性的库存校验导致在并发场景下,库存校验的结果不准确。这是超卖的根本原因。

通过以上分析,问题的根本原因在于库存校验严重依赖了分布式锁。因为在分布式锁正常set、del的情况下,库存校验是没有问题的。但是,当分布式锁不安全可靠的时候,库存校验就没有用了。

解决方案

知道了原因之后,我们就可以对症下药了。

实现相对安全的分布式锁

相对安全的定义:set、del是一一映射的,不会出现把其他现成的锁del的情况。从实际情况的角度来看,即使能做到set、del一一映射,也无法保障业务的绝对安全。

因为锁的过期时间始终是有界的,除非不设置过期时间或者把过期时间设置的很长,但这样做也会带来其他问题。故没有意义。

要想实现相对安全的分布式锁,必须依赖key的value值。在释放锁的时候,通过value值的唯一性来保证不会勿删。我们基于LUA脚本实现原子性的get and compare,如下:

public void safedUnLock(String key, String val) {     String luaScript = "local in = ARGV[1] local curr=redis.call('get', KEYS[1]) if in==curr then redis.call('del', KEYS[1]) end return 'OK'"";     RedisScript<String> redisScript = RedisScript.of(luaScript);     redisTemplate.execute(redisScript, Collections.singletonList(key), Collections.singleton(val)); }

我们通过LUA脚本来实现安全地解锁。

实现安全的库存校验

如果我们对于并发有比较深入的了解的话,会发现想 get and compare/ read and save 等操作,都是非原子性的。

如果要实现原子性,我们也可以借助LUA脚本来实现。但就我们这个例子中,由于抢购活动一单只能下1瓶,因此可以不用基于LUA脚本实现而是基于redis本身的原子性。原因在于:

// redis会返回操作之后的结果,这个过程是原子性的 Long currStock = redisTemplate.opsForHash().increment("key", "stock", -1);

发现没有,代码中的库存校验完全是“画蛇添足”。

改进之后的代码

经过以上的分析之后,我们决定新建一个DistributedLocker类专门用于处理分布式锁。

`public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
    String key = "key:" + request.getSeckillId();
    String val = UUID.randomUUID().toString();
    try {
        Boolean lockFlag = distributedLocker.lock(key, val, 10, TimeUnit.SECONDS);
        if (!lockFlag) {
            // 业务异常
        }

        // 用户活动校验
        // 库存校验,基于redis本身的原子性来保证
        Long currStock = stringRedisTemplate.opsForHash().increment(key + ":info", "stock", -1);
        if (currStock < 0) { // 说明库存已经扣减完了。
            // 业务异常。
            log.error("[抢购下单] 无库存");
        } else {
            // 生成订单
            // 发布订单创建成功事件
            // 构建响应
        }
    } finally {
        distributedLocker.safedUnLock(key, val);
        // 构建响应
    }
    return response;
}
`

深度思考

分布式锁有必要么

改进之后,其实可以发现,我们借助于redis本身的原子性扣减库存,也是可以保证不会超卖的。对的。但是如果没有这一层锁的话,那么所有请求进来都会走一遍业务逻辑,由于依赖了其他系统,此时就会造成对其他系统的压力增大。这会增加的性能损耗和服务不稳定性,得不偿失。基于分布式锁可以在一定程度上拦截一些流量。

分布式锁的选型

有人提出用RedLock来实现分布式锁。RedLock的可靠性更高,但其代价是牺牲一定的性能。在本场景,这点可靠性的提升远不如性能的提升带来的性价比高。如果对于可靠性极高要求的场景,则可以采用RedLock来实现。

再次思考分布式锁有必要么

由于bug需要紧急修复上线,因此我们将其优化并在测试环境进行了压测之后,就立马热部署上线了。实际证明,这个优化是成功的,性能方面略微提升了一些,并在分布式锁失效的情况下,没有出现超卖的情况。

然而,还有没有优化空间呢?有的!

由于服务是集群部署,我们可以将库存均摊到集群中的每个服务器上,通过广播通知到集群的各个服务器。网关层基于用户ID做hash算法来决定请求到哪一台服务器。这样就可以基于应用缓存来实现库存的扣减和判断。性能又进一步提升了!

`// 通过消息提前初始化好,借助ConcurrentHashMap实现高效线程安全
private static ConcurrentHashMap<Long, Boolean> SECKILL_FLAG_MAP = new ConcurrentHashMap<>();
// 通过消息提前设置好。由于AtomicInteger本身具备原子性,因此这里可以直接使用HashMap
private static Map<Long, AtomicInteger> SECKILL_STOCK_MAP = new HashMap<>();

...

public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;

    Long seckillId = request.getSeckillId();
    if(!SECKILL_FLAG_MAP.get(requestseckillId)) {
        // 业务异常
    }
     // 用户活动校验
     // 库存校验
    if(SECKILL_STOCK_MAP.get(seckillId).decrementAndGet() < 0) {
        SECKILL_FLAG_MAP.put(seckillId, false);
        // 业务异常
    }
    // 生成订单
    // 发布订单创建成功事件
    // 构建响应
    return response;
}
`

通过以上的改造,我们就完全不需要依赖redis了。性能和安全性两方面都能进一步得到提升!

当然,此方案没有考虑到机器的动态扩容、缩容等复杂场景,如果还要考虑这些话,则不如直接考虑分布式锁的解决方案。

总结

稀缺商品超卖绝对是重大事故。如果超卖数量多的话,甚至会给平台带来非常严重的经营影响和社会影响。经过本次事故,让我意识到对于项目中的任何一行代码都不能掉以轻心,否则在某些场景下,这些正常工作的代码就会变成致命杀手!对于一个开发者而言,则设计开发方案时,一定要将方案考虑周全。怎样才能将方案考虑周全?唯有持续不断地学习!

Redis——由分布式锁造成的重大事故

【热门阅读】

[1]  看完这篇Redis缓存三大问题,保你能和面试官互扯。

[2] 我以为我对Mysql事务很熟,直到我遇到了阿里面试官

[3]  面试官:你知道java类是怎么跑起来的吗?问的我一脸懵

[4]  面试造飞机系列:面对Redis持久化连环Call,你还顶得住吗?

[5] 面试造飞机系列:用心整理的HashMap面试题,以后都不用担心了

[6] 大厂面试官必问的Mysql锁机制

本文分享自微信公众号 - 非科班的科班(LDCldc123095)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
3个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
9个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这