Spark RPC通讯机制

Stella981
• 阅读 584

Spark 1.6推出了RPCEnv,RPCEndpoint,RPCEndpointRef为核心的新型架构下的RPC通信方式。 早期版本当中,有netty和Akka两种实现方式。但是从最新的2.11代码来看,Akka已经找不到了。关于netty的更多知识,可以查看之前的文章。

RpcEndpoint和RpcEndpointRef有一个管理者:RpcEnv。

RpcEnv是一个RpcEndpoints用于处理消息的环境,管理着整个RpcEndpoint的生命周期:(1)根据name或uri注册endpoints;(2)管理各种消息的处理;(3)停止endpoints。RpcEnv必须通过工厂类RpcEnvFactory创建。

RpcEnv里面有setupEndpoint方法, RpcEndpoint和RpcEndpointRef向RpcEnv进行注册。

客户端通过RpcEndpointRef发消息,首先通过RpcEnv来处理这个消息,找到这个消息具体发给谁,然后路由给RpcEndpoint实体。现在有两种方式,一种是AkkaRpcEnv,另一种是NettyRpcEnv。Spark默认使用更加高效的NettyRpcEnv。

对于Rpc捕获到的异常消息,RpcEnv将会用RpcCallContext.sendFailure将失败消息发送给发送者,或者将没有发送者,‘NotSerializableException’等记录到日志中。同时,RpcEnv也提供了根据name或uri获取RpcEndpointRef的方法。

下面,我们深入Spark源代码,看看上面3个组件,究竟是如何工作的。

首先,需要构建RPC通讯环境,这一点,应该是在SparkContext初始化的时候就应该完成的,我们看看代码是不是这样的:

在SparkContext当中,有一个私有属性,定义如下:

private var _env: SparkEnv = _

我们找到给它赋值的地方,位于 SparkContext 的初始化区域:

_env = createSparkEnv(_conf, isLocal, listenerBus)

  private[spark] def createSparkEnv(
      conf: SparkConf,
      isLocal: Boolean,
      listenerBus: LiveListenerBus): SparkEnv = {
    SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master))
  }

  private[spark] def createDriverEnv(
      conf: SparkConf,
      isLocal: Boolean,
      listenerBus: LiveListenerBus,
      numCores: Int,
      mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = {
    assert(conf.contains("spark.driver.host"), "spark.driver.host is not set on the driver!")
    assert(conf.contains("spark.driver.port"), "spark.driver.port is not set on the driver!")
    val hostname = conf.get("spark.driver.host")
    val port = conf.get("spark.driver.port").toInt
    create(
      conf,
      SparkContext.DRIVER_IDENTIFIER,
      hostname,
      port,
      isDriver = true,
      isLocal = isLocal,
      numUsableCores = numCores,
      listenerBus = listenerBus,
      mockOutputCommitCoordinator = mockOutputCommitCoordinator
    )
  }

下面这个函数当中,完成了很多工作,整个SparkEnv的构建工作,都在这里完成,我们找一下我们需要的东西:

private def create(
      conf: SparkConf,
      executorId: String,
      hostname: String,
      port: Int,
      isDriver: Boolean,
      isLocal: Boolean,
      numUsableCores: Int,
      listenerBus: LiveListenerBus = null,
      mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = {

    // Listener bus is only used on the driver
    if (isDriver) {
      assert(listenerBus != null, "Attempted to create driver SparkEnv with null listener bus!")
    }

    val securityManager = new SecurityManager(conf)

    val systemName = if (isDriver) driverSystemName else executorSystemName
val rpcEnv = RpcEnv.create(systemName, hostname, port, conf, securityManager,
      clientMode = !isDriver)

    // Figure out which port RpcEnv actually bound to in case the original port is 0 or occupied.
    // In the non-driver case, the RPC env's address may be null since it may not be listening
    // for incoming connections.
    if (isDriver) {
      conf.set("spark.driver.port", rpcEnv.address.port.toString)
    } else if (rpcEnv.address != null) {
      conf.set("spark.executor.port", rpcEnv.address.port.toString)
      logInfo(s"Setting spark.executor.port to: ${rpcEnv.address.port.toString}")
    }

    // Create an instance of the class with the given name, possibly initializing it with our conf
    def instantiateClass[T](className: String): T = {
      val cls = Utils.classForName(className)
      // Look for a constructor taking a SparkConf and a boolean isDriver, then one taking just
      // SparkConf, then one taking no arguments
      try {
        cls.getConstructor(classOf[SparkConf], java.lang.Boolean.TYPE)
          .newInstance(conf, new java.lang.Boolean(isDriver))
          .asInstanceOf[T]
      } catch {
        case _: NoSuchMethodException =>
          try {
            cls.getConstructor(classOf[SparkConf]).newInstance(conf).asInstanceOf[T]
          } catch {
            case _: NoSuchMethodException =>
              cls.getConstructor().newInstance().asInstanceOf[T]
          }
      }
    }

    // Create an instance of the class named by the given SparkConf property, or defaultClassName
    // if the property is not set, possibly initializing it with our conf
    def instantiateClassFromConf[T](propertyName: String, defaultClassName: String): T = {
      instantiateClass[T](conf.get(propertyName, defaultClassName))
    }

    val serializer = instantiateClassFromConf[Serializer](
      "spark.serializer", "org.apache.spark.serializer.JavaSerializer")
    logDebug(s"Using serializer: ${serializer.getClass}")

    val serializerManager = new SerializerManager(serializer, conf)

    val closureSerializer = new JavaSerializer(conf)

    def registerOrLookupEndpoint(
        name: String, endpointCreator: => RpcEndpoint):
      RpcEndpointRef = {
      if (isDriver) {
        logInfo("Registering " + name)
        rpcEnv.setupEndpoint(name, endpointCreator)
      } else {
        RpcUtils.makeDriverRef(name, conf, rpcEnv)
      }
    }

    val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)

    val mapOutputTracker = if (isDriver) {
      new MapOutputTrackerMaster(conf, broadcastManager, isLocal)
    } else {
      new MapOutputTrackerWorker(conf)
    }

    // Have to assign trackerEndpoint after initialization as MapOutputTrackerEndpoint
    // requires the MapOutputTracker itself
    mapOutputTracker.trackerEndpoint = registerOrLookupEndpoint(MapOutputTracker.ENDPOINT_NAME,
      new MapOutputTrackerMasterEndpoint(
        rpcEnv, mapOutputTracker.asInstanceOf[MapOutputTrackerMaster], conf))

    // Let the user specify short names for shuffle managers
    val shortShuffleMgrNames = Map(
      "sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName,
      "tungsten-sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName)
    val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")
    val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)
    val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)

    val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", false)
    val memoryManager: MemoryManager =
      if (useLegacyMemoryManager) {
        new StaticMemoryManager(conf, numUsableCores)
      } else {
        UnifiedMemoryManager(conf, numUsableCores)
      }

    val blockTransferService =
      new NettyBlockTransferService(conf, securityManager, hostname, numUsableCores)

    val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(
      BlockManagerMaster.DRIVER_ENDPOINT_NAME,
      new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),
      conf, isDriver)

    // NB: blockManager is not valid until initialize() is called later.
    val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,
      serializerManager, conf, memoryManager, mapOutputTracker, shuffleManager,
      blockTransferService, securityManager, numUsableCores)

    val metricsSystem = if (isDriver) {
      // Don't start metrics system right now for Driver.
      // We need to wait for the task scheduler to give us an app ID.
      // Then we can start the metrics system.
      MetricsSystem.createMetricsSystem("driver", conf, securityManager)
    } else {
      // We need to set the executor ID before the MetricsSystem is created because sources and
      // sinks specified in the metrics configuration file will want to incorporate this executor's
      // ID into the metrics they report.
      conf.set("spark.executor.id", executorId)
      val ms = MetricsSystem.createMetricsSystem("executor", conf, securityManager)
      ms.start()
      ms
    }

    val outputCommitCoordinator = mockOutputCommitCoordinator.getOrElse {
      new OutputCommitCoordinator(conf, isDriver)
    }
    val outputCommitCoordinatorRef = registerOrLookupEndpoint("OutputCommitCoordinator",
      new OutputCommitCoordinatorEndpoint(rpcEnv, outputCommitCoordinator))
    outputCommitCoordinator.coordinatorRef = Some(outputCommitCoordinatorRef)

    val envInstance = new SparkEnv(
      executorId,
      rpcEnv,
      serializer,
      closureSerializer,
      serializerManager,
      mapOutputTracker,
      shuffleManager,
      broadcastManager,
      blockManager,
      securityManager,
      metricsSystem,
      memoryManager,
      outputCommitCoordinator,
      conf)

    // Add a reference to tmp dir created by driver, we will delete this tmp dir when stop() is
    // called, and we only need to do it for driver. Because driver may run as a service, and if we
    // don't delete this tmp dir when sc is stopped, then will create too many tmp dirs.
    if (isDriver) {
      val sparkFilesDir = Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath
      envInstance.driverTmpDir = Some(sparkFilesDir)
    }

    envInstance
  }

再看一下RpcEnv.create 的实现:

  def create(
      name: String,
      host: String,
      port: Int,
      conf: SparkConf,
      securityManager: SecurityManager,
      clientMode: Boolean = false): RpcEnv = {
    val config = RpcEnvConfig(conf, name, host, port, securityManager, clientMode)
    new NettyRpcEnvFactory().create(config)
  }

到目前为止,我们搞清楚了2件事情, Netty 貌似是目前Spark RPC通讯的唯一选择,RpcENV保存在sc._env(SparkEnv的一个实例)当中。

到目前为止,RpcEnv的创建工作已经完成了。那么RPC通讯的另外2个元素,RpcEndPoint和RpcEndPointRef何时登场呢?

之前我们对RDD的count过程进行解析的时候,在TaskSchedulerImpl当中找到过下面这段代码:

override def submitTasks(taskSet: TaskSet) {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized {
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      val stage = taskSet.stageId
      val stageTaskSets =
        taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
      stageTaskSets(taskSet.stageAttemptId) = manager
      val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
        ts.taskSet != taskSet && !ts.isZombie
      }
      if (conflictingTaskSet) {
        throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
          s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
      }
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

      if (!isLocal && !hasReceivedTask) {
        starvationTimer.scheduleAtFixedRate(new TimerTask() {
          override def run() {
            if (!hasLaunchedTask) {
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources")
            } else {
              this.cancel()
            }
          }
        }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
      }
      hasReceivedTask = true
    }
    backend.reviveOffers()
  }

而 reviveOffers 的实现在CoarseGrainedSchedulerBackend当中:

  override def reviveOffers() {
    driverEndpoint.send(ReviveOffers)
  }

我们还是要先看看 driverEndpoint 是怎么被构建出来的:

首先是声明部分:var driverEndpoint: RpcEndpointRef = null

  override def start() {
    val properties = new ArrayBuffer[(String, String)]
    for ((key, value) <- scheduler.sc.conf.getAll) {
      if (key.startsWith("spark.")) {
        properties += ((key, value))
      }
    }

    // TODO (prashant) send conf instead of properties
    driverEndpoint = createDriverEndpointRef(properties)
  }

  protected def createDriverEndpointRef(
      properties: ArrayBuffer[(String, String)]): RpcEndpointRef = {
    rpcEnv.setupEndpoint(ENDPOINT_NAME, createDriverEndpoint(properties))
  }

  protected def createDriverEndpoint(properties: Seq[(String, String)]): DriverEndpoint = {
    new DriverEndpoint(rpcEnv, properties)
  }

上面红色字体部分分为几步:1、创建一个Driver End Point,2、将此EndPoint注册到RpcEnv当中,3、获得此EndPoint的Ref,也就是 driverEndpoint 。

我们再深究一下这个 setupEndpoint 当中究竟干了些什么:

NettyRpcEnv.scala

override def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef = {
    dispatcher.registerRpcEndpoint(name, endpoint)
  }

Dispatcher.scala

  def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
    val addr = RpcEndpointAddress(nettyEnv.address, name)
    val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
    synchronized {
      if (stopped) {
        throw new IllegalStateException("RpcEnv has been stopped")
      }
      if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
        throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
      }
      val data = endpoints.get(name)
      endpointRefs.put(data.endpoint, data.ref)
      receivers.offer(data)  // for the OnStart message
    }
    endpointRef
  }

分为几步:1、根据end point, 生成end point ref,2、强end point和 end point ref分别放到一个ConcurrentMap( endpoints 和 endpointRefs 的类型均为 ConcurrentMap )当中。

到此为止,end point和end point ref也已经登场,并且已经各就位了。

回到刚才的地方,我们再看看send方法做了些什么事情:

override def reviveOffers() {
    driverEndpoint.send(ReviveOffers)
  }

NettyRpcEnv的内部类,NettyRpcEndpointRef

override def send(message: Any): Unit = {
    require(message != null, "Message is null")
    nettyEnv.send(RequestMessage(nettyEnv.address, this, message))
  }

NettyRpcEnv:

  private[netty] def send(message: RequestMessage): Unit = {
    val remoteAddr = message.receiver.address
    if (remoteAddr == address) {
      // Message to a local RPC endpoint.
      try {
        dispatcher.postOneWayMessage(message)
      } catch {
        case e: RpcEnvStoppedException => logWarning(e.getMessage)
      }
    } else {
      // Message to a remote RPC endpoint.
      postToOutbox(message.receiver, OneWayOutboxMessage(serialize(message)))
    }
  }

我们首先需要搞清楚, remoteAddr == address 是怎么回事?

经过翻阅代码,当前场景,只能进到 dispatcher.postOneWayMessage(message) 当中。何时会进行一个remote的rpc调用,我们再做研究。

Dispatcher.scala

  def postOneWayMessage(message: RequestMessage): Unit = {
    postMessage(message.receiver.name, OneWayMessage(message.senderAddress, message.content),
      (e) => throw e)
  }

  private def postMessage(
      endpointName: String,
      message: InboxMessage,
      callbackIfStopped: (Exception) => Unit): Unit = {
    val error = synchronized {
      val data = endpoints.get(endpointName)
      if (stopped) {
        Some(new RpcEnvStoppedException())
      } else if (data == null) {
        Some(new SparkException(s"Could not find $endpointName."))
      } else {
        data.inbox.post(message)
        receivers.offer(data)
        None
      }
    }
    // We don't need to call `onStop` in the `synchronized` block
    error.foreach(callbackIfStopped)
  }

在这里,把message post到了这个data.inbox当中,我们猜测,应该会有一个或一组线程来监听 data.inbox 的变化,那么我们找一找 data.inbox,找到了下面这段代码:

private val threadpool: ThreadPoolExecutor = {
    val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads",
      math.max(2, Runtime.getRuntime.availableProcessors()))
    val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop")
    for (i <- 0 until numThreads) {
      pool.execute(new MessageLoop)
    }
    pool
  }

  /** Message loop used for dispatching messages. */
  private class MessageLoop extends Runnable {
    override def run(): Unit = {
      try {
        while (true) {
          try {
            val data = receivers.take()
            if (data == PoisonPill) {
              // Put PoisonPill back so that other MessageLoops can see it.
              receivers.offer(PoisonPill)
              return
            }
            data.inbox.process(Dispatcher.this)
          } catch {
            case NonFatal(e) => logError(e.getMessage, e)
          }
        }
      } catch {
        case ie: InterruptedException => // exit
      }
    }
  }

非常棒,我们再看看 data.inbox.process(Dispatcher.this) 的实现在什么地方,Inbox.scala

def process(dispatcher: Dispatcher): Unit = {
    var message: InboxMessage = null
    inbox.synchronized {
      if (!enableConcurrent && numActiveThreads != 0) {
        return
      }
      message = messages.poll()
      if (message != null) {
        numActiveThreads += 1
      } else {
        return
      }
    }
    while (true) {
      safelyCall(endpoint) {
        message match {
          case RpcMessage(_sender, content, context) =>
            try {
              endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>
                throw new SparkException(s"Unsupported message $message from ${_sender}")
              })
            } catch {
              case NonFatal(e) =>
                context.sendFailure(e)
                // Throw the exception -- this exception will be caught by the safelyCall function.
                // The endpoint's onError function will be called.
                throw e
            }

          case OneWayMessage(_sender, content) =>
            endpoint.receive.applyOrElse[Any, Unit](content, { msg =>
              throw new SparkException(s"Unsupported message $message from ${_sender}")
            })

          case OnStart =>
            endpoint.onStart()
            if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
              inbox.synchronized {
                if (!stopped) {
                  enableConcurrent = true
                }
              }
            }

          case OnStop =>
            val activeThreads = inbox.synchronized { inbox.numActiveThreads }
            assert(activeThreads == 1,
              s"There should be only a single active thread but found $activeThreads threads.")
            dispatcher.removeRpcEndpointRef(endpoint)
            endpoint.onStop()
            assert(isEmpty, "OnStop should be the last message")

          case RemoteProcessConnected(remoteAddress) =>
            endpoint.onConnected(remoteAddress)

          case RemoteProcessDisconnected(remoteAddress) =>
            endpoint.onDisconnected(remoteAddress)

          case RemoteProcessConnectionError(cause, remoteAddress) =>
            endpoint.onNetworkError(cause, remoteAddress)
        }
      }

      inbox.synchronized {
        // "enableConcurrent" will be set to false after `onStop` is called, so we should check it
        // every time.
        if (!enableConcurrent && numActiveThreads != 1) {
          // If we are not the only one worker, exit
          numActiveThreads -= 1
          return
        }
        message = messages.poll()
        if (message == null) {
          numActiveThreads -= 1
          return
        }
      }
    }
  }

到目前为止,我们基本清楚了,在TaskSchedulerImpl submitTasks之后,会有另外一个线程,收到这个消息,找到这个代码不太难,CoarseGrainedSchedulerBackend的内部类,DriverEndpoint:

    override def receive: PartialFunction[Any, Unit] = {
      case StatusUpdate(executorId, taskId, state, data) =>
        scheduler.statusUpdate(taskId, state, data.value)
        if (TaskState.isFinished(state)) {
          executorDataMap.get(executorId) match {
            case Some(executorInfo) =>
              executorInfo.freeCores += scheduler.CPUS_PER_TASK
              makeOffers(executorId)
            case None =>
              // Ignoring the update since we don't know about the executor.
              logWarning(s"Ignored task status update ($taskId state $state) " +
                s"from unknown executor with ID $executorId")
          }
        }

case ReviveOffers =>
        makeOffers()

      case KillTask(taskId, executorId, interruptThread) =>
        executorDataMap.get(executorId) match {
          case Some(executorInfo) =>
            executorInfo.executorEndpoint.send(KillTask(taskId, executorId, interruptThread))
          case None =>
            // Ignoring the task kill since the executor is not registered.
            logWarning(s"Attempted to kill task $taskId for unknown executor $executorId.")
        }
    }

到此为止,Rpc通讯的本地部分其实已经结束了。我们也基本搞清楚了RpcEnv,RpcEndPoint,RpcEndPointRef在整个流程当中的作用。

但是,到目前为止,我们还是在driver当中,还没有真正的进入spark集群。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Karen110 Karen110
3年前
​一篇文章总结一下Python库中关于时间的常见操作
前言本次来总结一下关于Python时间的相关操作,有一个有趣的问题。如果你的业务用不到时间相关的操作,你的业务基本上会一直用不到。但是如果你的业务一旦用到了时间操作,你就会发现,淦,到处都是时间操作。。。所以思来想去,还是总结一下吧,本次会采用类型注解方式。time包importtime时间戳从1970年1月1日00:00:00标准时区诞生到现在
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这