Flink从入门到入土

Stella981
• 阅读 647

Flink从入门到入土

和其他所有的计算框架一样,flink也有一些基础的开发步骤以及基础,核心的API,从开发步骤的角度来讲,主要分为四大部分

Flink从入门到入土

1.Environment

Flink从入门到入土

Flink Job在提交执行计算时,需要首先建立和Flink框架之间的联系,也就指的是当前的flink运行环境,只有获取了环境信息,才能将task调度到不同的taskManager执行。而这个环境对象的获取方式相对比较简单

// 批处理环境 val env = ExecutionEnvironment.getExecutionEnvironment // 流式数据处理环境 val env = StreamExecutionEnvironment.getExecutionEnvironment

2.Source

Flink从入门到入土

Flink框架可以从不同的来源获取数据,将数据提交给框架进行处理, 我们将获取数据的来源称之为数据源.

2.1.从集合读取数据

一般情况下,可以将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用。这里的数据结构采用集合类型是比较普遍的

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从集合读取数据
 */
object SourceList {

  def main(args: Array[String]): Unit = {
      //1.创建执行的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //2.从集合中读取数据
    val sensorDS: DataStream[WaterSensor] = env.fromCollection(
      // List(1,2,3,4,5)
      List(
        WaterSensor("ws_001", 1577844001, 45.0),
        WaterSensor("ws_002", 1577844015, 43.0),
        WaterSensor("ws_003", 1577844020, 42.0)
      )
    )
    //3.打印
    sensorDS.print()
    //4.执行
    env.execute("sensor")

  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

Flink从入门到入土

2.2从文件中读取数据

通常情况下,我们会从存储介质中获取数据,比较常见的就是将日志文件作为数据源

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从文件读取数据
 */
object SourceFile {

  def main(args: Array[String]): Unit = {
    //1.创建执行的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //2.从指定路径获取数据
    val fileDS: DataStream[String] = env.readTextFile("input/data.log")

    //3.打印
    fileDS.print()

    //4.执行
    env.execute("sensor")

  }
}
/**
 * 在读取文件时,文件路径可以是目录也可以是单一文件。如果采用相对文件路径,会从当前系统参数user.dir中获取路径
 * System.getProperty("user.dir")
 /
/
*
 * 如果在IDEA中执行代码,那么系统参数user.dir自动指向项目根目录,
 * 如果是standalone集群环境, 默认为集群节点根目录,当然除了相对路径以外,
 * 也可以将路径设置为分布式文件系统路径,如HDFS
 val fileDS: DataStream[String] =
 env.readTextFile( "hdfs://hadoop02:9000/test/1.txt")
 */
`

Flink从入门到入土

如果是standalone集群环境, 默认为集群节点根目录,当然除了相对路径以外,也可以将路径设置为分布式文件系统路径,如HDFS

val fileDS: DataStream[String] = env.readTextFile( "hdfs://hadoop02:9000/test/1.txt")

默认读取时,flink的依赖关系中是不包含Hadoop依赖关系的,所以执行上面代码时,会出现错误。

Flink从入门到入土

解决方法就是增加相关依赖jar包就可以了

Flink从入门到入土

2.3 kafka读取数据

Kafka作为消息传输队列,是一个分布式的,高吞吐量,易于扩展地基于主题发布/订阅的消息系统。在现今企业级开发中,Kafka 和 Flink成为构建一个实时的数据处理系统的首选

2.3.1 引入kafka连接器的依赖

<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 --> <dependency>     <groupId>org.apache.flink</groupId>     <artifactId>flink-connector-kafka-0.11_2.11</artifactId>     <version>1.10.0</version> </dependency>

2.3.2 代码实现参考

`import java.util.Properties

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import org.apache.flink.streaming.util.serialization.SimpleStringSchema

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从kafka读取数据
 */
object SourceKafka {

  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment =
      StreamExecutionEnvironment.getExecutionEnvironment

    val properties = new Properties()
    properties.setProperty("bootstrap.servers", "hadoop02:9092")
    properties.setProperty("group.id", "consumer-group")
    properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("auto.offset.reset", "latest")

    val kafkaDS: DataStream[String] = env.addSource(
      new FlinkKafkaConsumer011[String](
        "sensor",
        new SimpleStringSchema(),
        properties)
    )
    kafkaDS.print()
    env.execute("sensor")
  }
}
`

2.4 自定义数据源

大多数情况下,前面的数据源已经能够满足需要,但是难免会存在特殊情况的场合,所以flink也提供了能自定义数据源的方式

2.4.1  创建自定义数据源

`import com.atyang.day01.Source.SourceList.WaterSensor
import org.apache.flink.streaming.api.functions.source.SourceFunction

import scala.util.Random

/**
 * description: ss 
 * date: 2020/8/28 20:36 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:自定义数据源
 */
class MySensorSource extends SourceFunction[WaterSensor] {
  var flg = true
  override def run(ctx: SourceFunction.SourceContext[WaterSensor]): Unit = {
    while ( flg ) {
      // 采集数据
      ctx.collect(
        WaterSensor(
          "sensor_" +new Random().nextInt(3),
          1577844001,
          new Random().nextInt(5)+40
        )
      )
      Thread.sleep(100)
    }
  }

  override def cancel(): Unit = {
    flg = false;
  }
}`

Flink从入门到入土

3.Transform

Flink从入门到入土

在Spark中,算子分为转换算子和行动算子,转换算子的作用可以通过算子方法的调用将一个RDD转换另外一个RDD,Flink中也存在同样的操作,可以将一个数据流转换为其他的数据流。

转换过程中,数据流的类型也会发生变化,那么到底Flink支持什么样的数据类型呢,其实我们常用的数据类型,Flink都是支持的。比如:Long, String, Integer, Int, 元组,样例类,List, Map等。

3.1 map

  • 映射:将数据流中的数据进行转换, 形成新的数据流,消费一个元素并产出一个元素

  • 参数:Scala匿名函数或MapFunction

  • 返回:DataStream

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从集合读取数据
 */
object Transfrom_map {

  def main(args: Array[String]): Unit = {
      //1.创建执行的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //2.从集合中读取数据
    val sensorDS: DataStream[WaterSensor] = env.fromCollection(
      // List(1,2,3,4,5)
      List(
        WaterSensor("ws_001", 1577844001, 45.0),
        WaterSensor("ws_002", 1577844015, 43.0),
        WaterSensor("ws_003", 1577844020, 42.0)
      )
    )

    val sensorDSMap = sensorDS.map(x => (x.id+"_1",x.ts+"_1",x.vc + 1))

    //3.打印
    sensorDSMap.print()
    //4.执行
    env.execute("sensor")

  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)

}
`

Flink从入门到入土

3.1.1 MapFunction

Flink为每一个算子的参数都至少提供了Scala匿名函数和函数类两种的方式,其中如果使用函数类作为参数的话,需要让自定义函数继承指定的父类或实现特定的接口。例如:MapFunction

sensor-data.log 文件数据

sensor_1,1549044122,10 sensor_1,1549044123,20 sensor_1,1549044124,30 sensor_2,1549044125,40 sensor_1,1549044126,50 sensor_2,1549044127,60 sensor_1,1549044128,70 sensor_3,1549044129,80 sensor_3,1549044130,90 sensor_3,1549044130,100

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从文件读取数据
 */
object SourceFileMap {

  def main(args: Array[String]): Unit = {
    //1.创建执行的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //2.从指定路径获取数据
    val fileDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    val MapDS = fileDS.map(
      lines => {
        //更加逗号切割 获取每个元素
        val datas: Array[String] = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )

    //3.打印
    MapDS.print()

    //4.执行
    env.execute("map")

  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)

}
`

Flink从入门到入土

`import org.apache.flink.api.common.functions.MapFunction
import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从文件读取数据
 */
object Transform_MapFunction {

  def main(args: Array[String]): Unit = {
    //1.创建执行的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //2.从指定路径获取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

     sensorDS.map()

    //3.打印
  //  MapDS.print()

    //4.执行
    env.execute("map")

  }

  /**
   * 自定义继承 MapFunction
   * MapFunction[T,O]
   * 自定义输入和输出
   *
   */
  class MyMapFunction extends MapFunction[String,WaterSensor]{
    override def map(t: String): WaterSensor = {

      val datas: Array[String] = t.split(",")

      WaterSensor(datas(0),datas(1).toLong,datas(2).toInt)
    }
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)

}
`

Flink从入门到入土

3.1.2 RichMapFunction

所有Flink函数类都有其Rich版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。也有意味着提供了更多的,更丰富的功能。例如:RichMapFunction

sensor-data.log 文件数据 同上一致

`import org.apache.flink.api.common.functions.{MapFunction, RichMapFunction}
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList 
 * date: 2020/8/28 19:02 
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:从文件读取数据
 */
object Transform_RichMapFunction {

  def main(args: Array[String]): Unit = {
    //1.创建执行的环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //2.从指定路径获取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    val myMapDS: DataStream[WaterSensor] = sensorDS.map(new MyRichMapFunction)

    //3.打印
    myMapDS.print()

    //4.执行
    env.execute("map")

  }

  /**
   * 自定义继承 MapFunction
   * MapFunction[T,O]
   * 自定义输入和输出
   *
   */
  class MyRichMapFunction extends RichMapFunction[String,WaterSensor]{

    override def map(value: String): WaterSensor = {
      val datas: Array[String] = value.split(",")
      //      WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      WaterSensor(getRuntimeContext.getTaskName, datas(1).toLong, datas(2).toInt)
    }

    // 富函数提供了生命周期方法
    override def open(parameters: Configuration): Unit = {}

    override def close(): Unit = {}

  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)

}
`

Rich Function有一个生命周期的概念。典型的生命周期方法有:

  • open()方法是rich function的初始化方法,当一个算子例如map或者filter被调 用之前open()会被调用

  • close()方法是生命周期中的最后一个调用的方法,做一些清理工作

  • getRuntimeContext()方法提供了函数的RuntimeContext的一些信息,例如函数执行         的并行度,任务的名字,以及state状态

3.1.3 flatMap

  • 扁平映射:将数据流中的整体拆分成一个一个的个体使用,消费一个元素并产生零到多个元素

  • 参数:Scala匿名函数或FlatMapFunction

  • 返回:DataStream

Flink从入门到入土

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_FlatMap {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val listDS: DataStream[List[Int]] = env.fromCollection(
      List(
        List(1, 2, 3, 4),
        List(5, 6, 7,1,1,1)
      )
    )

    val resultDS: DataStream[Int] = listDS.flatMap(list => list)

    resultDS.print()

    // 4. 执行
    env.execute()
  }

}
`

Flink从入门到入土

3.2. filter

  • 过滤:根据指定的规则将满足条件(true)的数据保留,不满足条件(false)的数据丢弃

  • 参数:Scala匿名函数或FilterFunction

  • 返回:DataStream

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:Filter
 */
object Transform_Filter {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val listDS: DataStream[List[Int]] = env.fromCollection(
      List(
        List(1, 2, 3, 4,1, 2, 3, 4),
        List(5, 6, 7,1,1,1,1, 2, 3, 4,1, 2, 3, 4),
        List(1, 2, 3, 4),
        List(5, 6, 7,1,1,1),
        List(1, 2, 3, 4),
        List(5, 6, 7,1,1,1)
      )
    )
    // true就留下,false就抛弃
    listDS.filter(num => {
      num.size>5
      })
      .print("filter")
    // 4. 执行
    env.execute()
  }
}
`

Flink从入门到入土

3.3 keyBy

在Spark中有一个GroupBy的算子,用于根据指定的规则将数据进行分组,在flink中也有类似的功能,那就是keyBy,根据指定的key对数据进行分流

  • 分流:根据指定的Key将元素发送到不同的分区,相同的Key会被分到一个分区(这里分区指的就是下游算子多个并行节点的其中一个)。keyBy()是通过哈希来分区的

Flink从入门到入土

  • 参数:Scala匿名函数或POJO属性或元组索引,不能使用数组

  • 返回:KeyedStream

Flink从入门到入土

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_KeyBy {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    //3.转换为样例类
    val mapDS = sensorDS.map(
      lines => {
        val datas = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )

    // 4. 使用keyby进行分组
    // TODO 关于返回的key的类型:
    // 1. 如果是位置索引 或 字段名称 ,程序无法推断出key的类型,所以给一个java的Tuple类型
    // 2. 如果是匿名函数 或 函数类 的方式,可以推断出key的类型,比较推荐使用
    // *** 分组的概念:分组只是逻辑上进行分组,打上了记号(标签),跟并行度没有绝对的关系
    //      同一个分组的数据在一起(不离不弃)
    //      同一个分区里可以有多个不同的组

    //        val sensorKS: KeyedStream[WaterSensor, Tuple] = mapDS.keyBy(0)
    //    val sensorKS: KeyedStream[WaterSensor, Tuple] = mapDS.keyBy("id")
    val sensorKS: KeyedStream[WaterSensor, String] = mapDS.keyBy(_.id)
    //    val sensorKS: KeyedStream[WaterSensor, String] = mapDS.keyBy(
    //      new KeySelector[WaterSensor, String] {
    //        override def getKey(value: WaterSensor): String = {
    //          value.id
    //        }
    //      }
    //    )

    sensorKS.print().setParallelism(5)

    // 4. 执行
    env.execute()
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

Flink从入门到入土

3.4 shuffle

  • 打乱重组(洗牌):将数据按照均匀分布打散到下游

  • 参数:无

  • 返回:DataStream

Flink从入门到入土

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_Shuffle {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    val shuffleDS = sensorDS.shuffle

    sensorDS.print("data")

    shuffleDS.print("shuffle")
    // 4. 执行
    env.execute()
  }
}
`

Flink从入门到入土

3.5. split

在某些情况下,我们需要将数据流根据某些特征拆分成两个或者多个数据流,给不同数据流增加标记以便于从流中取出。

Flink从入门到入土

需求:将水位传感器数据按照空高高低(以40cm,30cm为界),拆分成三个流

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_Split {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    // 3.转换成样例类
    val mapDS: DataStream[WaterSensor] = sensorDS.map(
      lines => {
        val datas: Array[String] = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )
    val splitSS: SplitStream[WaterSensor] = mapDS.split(
      sensor => {
        if (sensor.vc < 40) {
          Seq("normal")
        } else if (sensor.vc < 80) {
          Seq("Warn")
        } else {
          Seq("alarm")
        }
      }
    )

    // 4. 执行
    env.execute()
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

3.6 select

将数据流进行切分后,如何从流中将不同的标记取出呢,这时就需要使用select算子了。

Flink从入门到入土

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_Split {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    // 3.转换成样例类
    val mapDS: DataStream[WaterSensor] = sensorDS.map(
      lines => {
        val datas: Array[String] = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )
    val splitDS: SplitStream[WaterSensor] = mapDS.split(
      sensor => {
        if (sensor.vc < 40) {
          Seq("info")
        } else if (sensor.vc < 80) {
          Seq("warn")
        } else {
          Seq("error")
        }
      }
    )
    val errorDS: DataStream[WaterSensor] = splitDS.select("error")
    val warnDS: DataStream[WaterSensor] = splitDS.select("warn")
    val infoDS: DataStream[WaterSensor] = splitDS.select("info")

    infoDS.print("info")
    warnDS.print("warn")
    errorDS.print("error")

    // 4. 执行
    env.execute()
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

Flink从入门到入土

3.7 connect

在某些情况下,我们需要将两个不同来源的数据流进行连接,实现数据匹配,比如订单支付和第三方交易信息,这两个信息的数据就来自于不同数据源,连接后,将订单支付和第三方交易信息进行对账,此时,才能算真正的支付完成。

Flink中的connect算子可以连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

Flink从入门到入土

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_Connect {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    // 3.转换成样例类
    val mapDS: DataStream[WaterSensor] = sensorDS.map(
      lines => {
        val datas: Array[String] = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )

    // 4. 从集合中再读取一条流
    val numDS: DataStream[Int] = env.fromCollection(List(1, 2, 3, 4, 5, 6))

    val resultCS: ConnectedStreams[WaterSensor, Int] = mapDS.connect(numDS)

    // coMap表示连接流调用的map,各自都需要一个 function
    resultCS.map(
      sensor=>sensor.id,
      num=>num+1
    ).print()

    // 4. 执行
    env.execute()
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

Flink从入门到入土

3.8 union

对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream

Flink从入门到入土

connect与 union 区别:

  1. union之前两个流的类型必须是一样,connect可以不一样

  2. connect只能操作两个流,union可以操作多个。

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:FlatMap
 */
object Transform_Union {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2. 从集合中读取流
    val num1DS: DataStream[Int] = env.fromCollection(List(1, 2, 3, 4))
    val num2DS: DataStream[Int] = env.fromCollection(List(7, 8, 9, 10))
    val num3DS: DataStream[Int] = env.fromCollection(List(17, 18, 19, 110))

    // TODO union 真正将多条流合并成一条流
    // 合并的流,类型必须一致
    // 可以合并多条流,只要类型一致
    num1DS.union(num2DS).union(num3DS)
      .print()     

    // 4. 执行
    env.execute()
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

Flink从入门到入土

3.9 Operator

Flink作为计算框架,主要应用于数据计算处理上, 所以在keyBy对数据进行分流后,可以对数据进行相应的统计分析

3.9.1 滚动聚合算子(Rolling Aggregation)

这些算子可以针对KeyedStream的每一个支流做聚合。执行完成后,会将聚合的结果合成一个流返回,所以结果都是DataStream

sum()

Flink从入门到入土

min()

Flink从入门到入土

max()

Flink从入门到入土

3.9.2 reduce

一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

Flink从入门到入土

`import org.apache.flink.streaming.api.scala._

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:Reduce
 */
object Transform_Reduce {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    // 3.转换成样例类
    val mapDS: DataStream[WaterSensor] = sensorDS.map(
      lines => {
        val datas: Array[String] = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )
    val sensorKS: KeyedStream[WaterSensor, String] = mapDS.keyBy(_.id)
    // 输入的类型一样,输出类型和输出类型也要一样
    // 组内的第一条数据,不进入reduce计算
    val reduceDS: DataStream[WaterSensor] = sensorKS.reduce(
      (ws1, ws2) => {
        println(ws1 + "<===>" + ws2)
        WaterSensor(ws1.id, System.currentTimeMillis(), ws1.vc + ws2.vc)
      }
    )
    reduceDS.print("reduce")
    // 4. 执行
    env.execute()
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

Flink从入门到入土

3.9.3process

Flink在数据流通过keyBy进行分流处理后,如果想要处理过程中获取环境相关信息,可以采用process算子自定义实现 1)继承KeyedProcessFunction抽象类,并定义泛型:[KEY, IN, OUT]

class MyKeyedProcessFunction extends KeyedProcessFunction[String, WaterSensor, String]{}

  1. 重写方法

`// 自定义KeyedProcessFunction,是一个特殊的富函数
  // 1.实现KeyedProcessFunction,指定泛型:K - key的类型, I - 上游数据的类型, O - 输出的数据类型
  // 2.重写 processElement方法,定义 每条数据来的时候 的 处理逻辑

/**
      * 处理逻辑:来一条处理一条
      *
      * @param value 一条数据
      * @param ctx   上下文对象
      * @param out   采集器:收集数据,并输出
      */
    override def processElement(value: WaterSensor, ctx: KeyedProcessFunction[String, WaterSensor, String]#Context, out: Collector[String]): Unit = {
      out.collect("我来到process啦,分组的key是="+ctx.getCurrentKey+",数据=" + value)
      // 如果key是tuple,即keyby的时候,使用的是 位置索引 或 字段名称,那么key获取到是一个tuple
//      ctx.getCurrentKey.asInstanceOf[Tuple1].f0 //Tuple1需要手动引入Java的Tuple
    }
`

完整代码:

`import org.apache.flink.streaming.api.functions.KeyedProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

/**
 * description: SourceList
 * date: 2020/8/28 19:02
 * version: 1.0
 *
 * @author 阳斌
 *         邮箱:1692207904@qq.com
 *         类的说明:Reduce
 */
object Transform_Process {

  def main(args: Array[String]): Unit = {

    // 1.创建执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // 2.读取数据
    val sensorDS: DataStream[String] = env.readTextFile("input/sensor-data.log")

    // 3.转换成样例类
    val mapDS: DataStream[WaterSensor] = sensorDS.map(
      lines => {
        val datas: Array[String] = lines.split(",")
        WaterSensor(datas(0), datas(1).toLong, datas(2).toInt)
      }
    )
    //按照ID  进行分组
    val sensorKS: KeyedStream[WaterSensor, String] = mapDS.keyBy(_.id)

    sensorKS.process(new MyKeyedProcessFunction)

    // 4. 执行
    env.execute()
  }

  // 自定义KeyedProcessFunction,是一个特殊的富函数
  // 1.实现KeyedProcessFunction,指定泛型:K - key的类型, I - 上游数据的类型, O - 输出的数据类型
  // 2.重写 processElement方法,定义 每条数据来的时候 的 处理逻辑
  class MyKeyedProcessFunction extends KeyedProcessFunction[String, WaterSensor, String] {
    /**
     * 处理逻辑:来一条处理一条
     *
     * @param value 一条数据
     * @param ctx   上下文对象
     * @param out   采集器:收集数据,并输出
     */
    override def processElement(value: WaterSensor, ctx: KeyedProcessFunction[String, WaterSensor, String]#Context, out: Collector[String]): Unit = {
      out.collect("我来到process啦,分组的key是="+ctx.getCurrentKey+",数据=" + value)
      // 如果key是tuple,即keyby的时候,使用的是 位置索引 或 字段名称,那么key获取到是一个tuple
      //      ctx.getCurrentKey.asInstanceOf[Tuple1].f0 //Tuple1需要手动引入Java的Tuple
    }
  }

  /**
   * 定义样例类:水位传感器:用于接收空高数据
   *
   * @param id 传感器编号
   * @param ts 时间戳
   * @param vc 空高
   */
  case class WaterSensor(id: String, ts: Long, vc: Double)
}
`

4.Sink

Flink从入门到入土

Sink有下沉的意思,在Flink中所谓的Sink其实可以表示为将数据存储起来的意思,也可以将范围扩大,表示将处理完的数据发送到指定的存储系统的输出操作

之前我们一直在使用的print方法其实就是一种Sink。

@PublicEvolving     public DataStreamSink<T> print(String sinkIdentifier) {         PrintSinkFunction<T> printFunction = new PrintSinkFunction(sinkIdentifier, false);         return this.addSink(printFunction).name("Print to Std. Out");     }

官方提供了一部分的框架的sink。除此以外,需要用户自定义实现sink

Flink从入门到入土

Flink从入门到入土

琐碎时间想看一些技术文章,可以去公众号菜单栏翻一翻我分类好的内容,应该对部分童鞋有帮助。同时看的过程中发现问题欢迎留言指出,不胜感谢~。另外,有想多了解哪些方面内容的可以留言(什么时候,哪篇文章下留言都行),附菜单栏截图(PS:很多人不知道公众号菜单栏是什么)

Flink从入门到入土

END

Flink从入门到入土

我知道你 “在看”

本文分享自微信公众号 - Java知音(Java_friends)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
HIVE 时间操作函数
日期函数UNIX时间戳转日期函数: from\_unixtime语法:   from\_unixtime(bigint unixtime\, string format\)返回值: string说明: 转化UNIX时间戳(从19700101 00:00:00 UTC到指定时间的秒数)到当前时区的时间格式举例:hive   selec
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
9个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这