5个需要掌握的sklearn技能

Wesley13
• 阅读 634

虽然scikit-learn在机器学习领域很重要,但是很多人并不知道利用这个库中的一些强大的功能。本文将介绍scikit-learn中5个最有用的5个隐藏的瑰宝,充分利用这些秘密武器将有效提高你的机器学习处理的效率!

1、数据集生成器

Scikit-learn有很多数据集生成器,可以用来生成各种复杂度和维度的人工数据集。

例如,make_blobs函数可以创建包含很多数据样本、聚类中心、维度的“blobs”或数据聚类。可视化以后可以清晰看出样本的分布:

5个需要掌握的sklearn技能

Scikit-learn其实提供了很多数据集创建函数:

5个需要掌握的sklearn技能

  • make_moons(n_samples=100, noise=0.1)
  • make_circles(n_samples=100, noise=0.05)
  • make_regression(n_samples=100, n_features=1, noise=15)
  • make_classification(n_samples=100)

2、流水线/Pipeline

流水线可以将不同的方法组合为单一模型,在自然语言处理(NLP)应用中这一点非常重要。可以通过组合多个模型的方式来创建流水线,数据将依次流过聚合模型中的各环节。流水线有标准的拟合与预测能力,这使得训练过程得到很好的组织。

很多对象都可以整合进流水线:

  • 缺失值处理器/Imputers:如果你的数据中包含缺失的数据,可以试试Simple Imputer或KNN Imputer
  • 编码器/Encoders:如果你的数据不是二进制分类,你可能需要使用一个Label Encoder或者One-Hot Encoder
  • NLP矢量化处理器/NLP Vectorizers:如果你在处理NLP数据,那么可以使用Count Vectorizer、TD-IDF Vectorize或者Hash Vectorizer
  • 数值变换:可以尝试标准化处理器、min-max缩放等等

3、网格搜索/GridSearchCV

在机器学习中的一个常见任务就是找出模型的正确参数集。通常你可以基于对任务的理解猜测参数的取值,或者编程找出最优集合。sklearn内置了函数GridSearchCV可以自动找出最优参数集。

GridSearchCV对象需要两个参数:首先是要训练的模型对象,例如下面示例中的SVM分类器,第二个则是一个描述参数模型的字典,字典的每一个键对应模型的一个参数,键值则是可能取值的列表。

from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV

iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC()

clf = GridSearchCV(svc, parameters)
clf.fit(iris.data, iris.target)
clf.best_params_ #[Output]: {'C': 1, 'kernel': 'linear'}

网格搜索完成后,best_params属性中就记录了表现最好的模型参数。

4、验证曲线/validation_curve

要可视化一个参数对模型性能的影响,可以使用sklearn的validation_curve。这个函数需要一些参数 —— 模型、要调整的参数、参数的取值范围、运行的次数等。validation_curve类似于单变量的网格搜索,可以帮助你更好的可视化单个参数变化的效果。

from sklearn.model_selection import validation_curve
train_scores, valid_scores = validation_curve(model,
                                              X, y, 
                                              "max_depth", #model parameter to be adjusted
                                              range(2,7), #values of the parameter
                                              cv=10) #number of folds for k-fold evaluation

train_scores value: #Rows: number of parameter values (4), Columns: each of the values for the folds (10)
array([[0.96296296, 0.95555556, 0.96296296, 0.97037037, 0.95555556,
        0.95555556, 0.95555556, 0.96296296, 0.97037037, 0.96296296],
       [0.97037037, 0.97037037, 0.97777778, 0.98518519, 0.97037037,
        0.97037037, 0.97037037, 0.97037037, 0.97777778, 0.97777778],
       [0.99259259, 0.99259259, 0.99259259, 1.        , 0.99259259,
        0.99259259, 0.99259259, 1.        , 0.99259259, 0.99259259],
       [1.        , 1.        , 1.        , 1.        , 1.        ,
        1.        , 1.        , 1.        , 0.99259259, 1.        ],
       [1.        , 1.        , 1.        , 1.        , 1.        ,
        1.        , 1.        , 1.        , 1.        , 1.        ]])

validation_curve输出的结构是一个元组 —— 一个表示训练得分,另一个表示测试得分。数组中的每个元素表示k次运行中的一个参数值。

当绘制结果后,参数和精确度之间的关系就很清晰了:

import matplotlib.pyplot as plt
import seaborn as sns

sns.set_palette('RdYlGn')
sns.set_style('whitegrid')

params = range(2,10)
for index,param in enumerate(train_scores):
    sns.lineplot(range(10),param,label=params[index])
    
plt.title("Tree Depth Impact on Training Accuracy")
plt.xlabel("CV-Fold")
plt.ylabel("Training Accuracy")
plt.show()

5个需要掌握的sklearn技能

这让我们可以可视化树的深度对准确度的影响。从上图中可以看到树深度为5或6时,模型的性能相当好,但是再继续增加深度就会导致过拟合。

K折交叉验证

交叉验证是一种准确度高于train_test_split的方法,并且通常需要更少的代码。在传统的训练/测试集拆分中,数据样本被随机的分配到训练集和测试集,通常比例为7:3~8:2,在训练集上训练模型,然后在测试集上评估模型,以确保模型真正泛化而非单纯的记忆。

然而由于每次分割是随机的,分割10次将产生10个不同的测试结果。

为了解决这个问题,K折交叉验证将数据拆分为K类,在其中K-1个子集上训练模型,在剩下的1个子集上测试模型。重复这一过程直至测试子集最终覆盖完整的数据集,那么就得到了完整并且可信的准确度指标。这种方法更好的一点是,不需要跟踪x-train、x-test、y-train和y-test变量。交叉验证唯一的缺点是需要更多时间 —— 不过要得到更好的结果总是要多付出一点成本。


原文链接:scikit-learn中的5个隐藏的瑰宝 — 汇智网

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Easter79 Easter79
3年前
swap空间的增减方法
(1)增大swap空间去激活swap交换区:swapoff v /dev/vg00/lvswap扩展交换lv:lvextend L 10G /dev/vg00/lvswap重新生成swap交换区:mkswap /dev/vg00/lvswap激活新生成的交换区:swapon v /dev/vg00/lvswap
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
皕杰报表(关于日期时间时分秒显示不出来)
在使用皕杰报表设计器时,数据据里面是日期型,但当你web预览时候,发现有日期时间类型的数据时分秒显示不出来,只有年月日能显示出来,时分秒显示为0:00:00。1.可以使用tochar解决,数据集用selecttochar(flowdate,"yyyyMMddHH:mm:ss")fromtablename2.也可以把数据库日期类型date改成timestamp
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Android蓝牙连接汽车OBD设备
//设备连接public class BluetoothConnect implements Runnable {    private static final UUID CONNECT_UUID  UUID.fromString("0000110100001000800000805F9B34FB");
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这