InfluxDB和MySQL的读写对比测试

Stella981
• 阅读 691

今天进行了InfluxDB和MySQL的对比测试,这里记录下结果,也方便我以后查阅。

操作系统: CentOS6.5_x64
InfluxDB版本 : v1.1.0
MySQL版本:v5.1.73
CPU : Intel(R) Core(TM) i5-2320 CPU @ 3.00GHz
内存 :12G
硬盘 :SSD 

一、MySQL读写测试

测试准备

初始化SQL语句:

CREATE DATABASE testMysql;
CREATE TABLE `monitorStatus` (
    `system_name` VARCHAR(20) NOT NULL,
    `site_name` VARCHAR(50) NOT NULL,
    `equipment_name` VARCHAR(50) NOT NULL,
    `current_value` DOUBLE NOT NULL,
    `timestamp` BIGINT(20) NULL DEFAULT NULL,
    INDEX `system_name` (`system_name`),
    INDEX `site_name` (`site_name`),
    INDEX `equipment_name` (`equipment_name`),
    INDEX `timestamp` (`timestamp`)
)
ENGINE=InnoDB;

单写测试代码(insertTest1.c):

InfluxDB和MySQL的读写对比测试 InfluxDB和MySQL的读写对比测试

#include <stdlib.h>  
#include <stdio.h>  
#include <time.h>
#include "mysql/mysql.h"

#define N 100

int main()
{
    MYSQL *conn_ptr;  
    int res;  
    int t,i,j;
    int64_t tstamp = 1486872962;        
    srand(time(NULL));
    t=0;
    conn_ptr = mysql_init(NULL);  
    if (!conn_ptr)
    {  
        printf("mysql_init failed\n");  
        return EXIT_FAILURE;  
    }  
    conn_ptr = mysql_real_connect(conn_ptr,"localhost","root","","testMysql",0,NULL,0);  
    if (conn_ptr)
    {  
        for(i=1;i<= 10000;i++)
        {
            mysql_query(conn_ptr,"begin");
            for(j=0;j<N;j++,t++)
            {
                char query[1024]={0};

                sprintf(query,"insert into monitorStatus values ('sys_%d','s_%d','e_%d','0.%02d','%lld');",
                    //j%10,(t+i)%10,(t+j)%10,(t+i+j)%100,tstamp);
                    j%10,(t+i)%10,(t+j)%10,rand()%100,tstamp);
                //printf("query : %s\n",query);
                res = mysql_query(conn_ptr,query);

                if (!res)
                {   
                    //printf("Inserted %lu rows\n",(unsigned long)mysql_affected_rows(conn_ptr));   
                }
                else
                {   
                    fprintf(stderr, "Insert error %d: %sn",mysql_errno(conn_ptr),mysql_error(conn_ptr));  
                }
                if(j%10 == 0) tstamp+=1;
            }
            mysql_query(conn_ptr,"commit");
            //printf("i=%d\n",i);
        }
    }
    else
    {  
        printf("Connection failed\n");  
    }  
    mysql_close(conn_ptr);  
    return EXIT_SUCCESS;  
}

View Code

可根据情况调整测试代码中的N参数。

单读测试代码(queryTest1.c):

InfluxDB和MySQL的读写对比测试 InfluxDB和MySQL的读写对比测试

#include <stdio.h>  
#include <stdlib.h>  
#include "mysql/mysql.h"

int main()
{  
    MYSQL *conn_ptr;  
    MYSQL_RES *res_ptr;  
    MYSQL_ROW sqlrow;  
    MYSQL_FIELD *fd;  
    int res, i, j;  

    conn_ptr = mysql_init(NULL);  
    if (!conn_ptr)
    {  
        return EXIT_FAILURE;  
    }  
    conn_ptr = mysql_real_connect(conn_ptr,"localhost","root","","testMysql", 0, NULL, 0);  
    if (conn_ptr)
    {  
        res = mysql_query(conn_ptr,"select * from `monitorStatus` where system_name='sys_8' and site_name='s_9' and equipment_name='e_6' order by timestamp desc limit 10000;");

        if (res)
        {         
            printf("SELECT error:%s\n",mysql_error(conn_ptr));     
        }
        else
        {        
            res_ptr = mysql_store_result(conn_ptr);             
            if(res_ptr)
            {               
                printf("%lu Rows\n",(unsigned long)mysql_num_rows(res_ptr));   
                j = mysql_num_fields(res_ptr);          
                while((sqlrow = mysql_fetch_row(res_ptr)))  
                {  
                    continue;
                    for(i = 0; i < j; i++)         
                        printf("%s\t", sqlrow[i]);                
                    printf("\n");          
                }              
                if (mysql_errno(conn_ptr))
                {                      
                    fprintf(stderr,"Retrive error:s\n",mysql_error(conn_ptr));               
                }        
            }        
            mysql_free_result(res_ptr);        
        }  
    }
    else
    {  
        printf("Connection failed\n");  
    }  
    mysql_close(conn_ptr);  
    return EXIT_SUCCESS;  
}  

View Code

Makefile文件:

all:
    gcc -g insertTest1.c -o insertTest1 -L/usr/lib64/mysql/ -lmysqlclient
    gcc -g queryTest1.c -o queryTest1 -L/usr/lib64/mysql/ -lmysqlclient

clean:
    rm -rf insertTest1
    rm -rf queryTest1

测试数据记录

磁盘空间占用查询:

使用du方式(新数据库,仅为测试):

du -sh /var/lib/mysql

查询特定表:

use information_schema;
select concat(round(sum(DATA_LENGTH/1024/1024), 2), 'MB') as data from TABLES where table_schema='testMysql' and table_name='monitorStatus';

测试结果:

  • 100万条数据

    [root@localhost mysqlTest]# time ./insertTest1
    
    real    1m20.645s
    user    0m8.238s
    sys    0m5.931s
    
    [root@localhost mysqlTest]# time ./queryTest1
    10000 Rows
    
    real    0m0.269s
    user    0m0.006s
    sys    0m0.002s
    

    原始数据 : 28.6M
    du方式 : 279MB
    sql查询方式: 57.59MB
    写入速度: 12398 / s
    读取速度: 37174 / s

  • 1000万条数据

    root@localhost mysqlTest]# time ./insertTest1
    
    real    7m15.003s
    user    0m48.187s
    sys    0m33.885s
    
    
    [root@localhost mysqlTest]# time ./queryTest1
    10000 Rows
    
    real    0m6.592s
    user    0m0.005s
    sys    0m0.002s
    

    原始数据 : 286M
    du方式 : 2.4G
    sql查询方式: 572MB
    写入速度: 22988 / s
    读取速度: 1516 / s

  • 3000万条数据

    [root@localhost mysqlTest]# time ./insertTest1
    
    real    20m38.235s
    user    2m21.459s
    sys    1m40.329s
    [root@localhost mysqlTest]# time ./queryTest1
    10000 Rows
    
    real    0m4.421s
    user    0m0.004s
    sys    0m0.004s
    

    原始数据 : 858M
    du方式 : 7.1G
    sql查询方式: 1714MB
    写入速度: 24228 / s
    读取速度: 2261 / s

二、InfluxDB读写测试

测试准备

需要将InfluxDB的源码放入 go/src/github.com/influxdata 目录

单写测试代码(write1.go):

InfluxDB和MySQL的读写对比测试 InfluxDB和MySQL的读写对比测试

package main

import (
    "log"
    "time"
    "fmt"
    "math/rand"
    "github.com/influxdata/influxdb/client/v2"
)

const (
    MyDB = "testInfluxdb"
    username = "root"
    password = ""
)

func queryDB(clnt client.Client, cmd string) (res []client.Result, err error) {
    q := client.Query{
        Command:  cmd,
        Database: MyDB,
    }
    if response, err := clnt.Query(q); err == nil {
        if response.Error() != nil {
            return res, response.Error()
        }
        res = response.Results
    } else {
        return res, err
    }
    return res, nil
}

func writePoints(clnt client.Client,num int) {
    sampleSize := 1 * 10000
    rand.Seed(42)
    t := num
    bp, _ := client.NewBatchPoints(client.BatchPointsConfig{
        Database:  MyDB,
        Precision: "us",
    })

    for i := 0; i < sampleSize; i++ {
        t += 1
        tags := map[string]string{
            "system_name": fmt.Sprintf("sys_%d",i%10),
            "site_name":fmt.Sprintf("s_%d", (t+i) % 10),
            "equipment_name":fmt.Sprintf("e_%d",t % 10),
        }
        fields := map[string]interface{}{
            "value" : fmt.Sprintf("%d",rand.Int()),
        }
        pt, err := client.NewPoint("monitorStatus", tags, fields,time.Now())
        if err != nil {
            log.Fatalln("Error: ", err)
        }
        bp.AddPoint(pt)
    }

    err := clnt.Write(bp)
    if err != nil {
        log.Fatal(err)
    }

    //fmt.Printf("%d task done\n",num)
}

func main() {
    // Make client
    c, err := client.NewHTTPClient(client.HTTPConfig{
        Addr: "http://localhost:8086",
        Username: username,
        Password: password,
    })

    if err != nil {
        log.Fatalln("Error: ", err)
    }
    _, err = queryDB(c, fmt.Sprintf("CREATE DATABASE %s", MyDB))
    if err != nil {
        log.Fatal(err)
    }

    i := 1
    for i <= 10000 {
        defer writePoints(c,i)
        //fmt.Printf("i=%d\n",i)
        i += 1
    }
    //fmt.Printf("task done : i=%d \n",i)

}

View Code

单读测试代码(query1.go):

InfluxDB和MySQL的读写对比测试 InfluxDB和MySQL的读写对比测试

package main

import (
    "log"
    //"time"
    "fmt"
    //"math/rand"
    "github.com/influxdata/influxdb/client/v2"
)

const (
    MyDB = "testInfluxdb"
    username = "root"
    password = ""
)

func queryDB(clnt client.Client, cmd string) (res []client.Result, err error) {
    q := client.Query{
        Command:  cmd,
        Database: MyDB,
    }
    if response, err := clnt.Query(q); err == nil {
        if response.Error() != nil {
            return res, response.Error()
        }
        res = response.Results
    } else {
        return res, err
    }
    return res, nil
}

func main() {
    // Make client
    c, err := client.NewHTTPClient(client.HTTPConfig{
        Addr: "http://localhost:8086",
        Username: username,
        Password: password,
    })

    if err != nil {
        log.Fatalln("Error: ", err)
    }
    q := fmt.Sprintf("select * from monitorStatus where system_name='sys_5' and site_name='s_1' and equipment_name='e_6' order by time desc limit 10000 ;")
    res, err2 := queryDB(c, q)
    if err2 != nil {
        log.Fatal(err)
    }
    count := len(res[0].Series[0].Values)
    log.Printf("Found a total of %v records\n", count)

}

View Code

测试结果记录

查看整体磁盘空间占用:

du -sh /var/lib/influxdb/

查看最终磁盘空间占用:

du -sh /var/lib/influxdb/data/testInfluxdb
  • 100万条数据

    [root@localhost goTest2]# time ./write1
    real    0m14.594s
    user    0m11.475s
    sys    0m0.251s
    
    [root@localhost goTest2]# time ./query1
    2017/02/12 20:00:24 Found a total of 10000 records
    
    real    0m0.222s
    user    0m0.052s
    sys    0m0.009s
    

    原始数据 : 28.6M
    整体磁盘占用:27M
    最终磁盘占用:21M
    写入速度: 68521 / s
    读取速度: 45045 / s

  • 1000万条数据

    [root@localhost goTest2]# time ./write1
    
    real    2m22.520s
    user    1m51.704s
    sys    0m2.532s
    
    [root@localhost goTest2]# time ./query1
    2017/02/12 20:05:16 Found a total of 10000 records
    
    real    0m0.221s
    user    0m0.050s
    sys    0m0.003s
    

    原始数据 : 286M
    整体磁盘占用:214M
    最终磁盘占用:189M 写入速度: 70165 / s
    读取速度: 45249 / s

  • 3000万条数据

    [root@localhost goTest2]# time ./write1
    
    real    7m19.121s
    user    5m49.738s
    sys    0m8.189s
    [root@localhost goTest2]# ls
    query1  query1.go  write1  write1.go
    [root@localhost goTest2]# time ./query1
    2017/02/12 20:49:40 Found a total of 10000 records
    
    real    0m0.233s
    user    0m0.050s
    sys    0m0.012s
    

    原始数据 : 858M
    整体磁盘占用:623M
    最终磁盘占用:602M
    写入速度: 68318 / s
    读取速度: 42918 / s

三、测试结果分析

整体磁盘占用情况对比:

InfluxDB和MySQL的读写对比测试

最终磁盘占用情况对比:

InfluxDB和MySQL的读写对比测试

写入速度对比:

InfluxDB和MySQL的读写对比测试

读取速度对比:

InfluxDB和MySQL的读写对比测试

结论:

相比MySQL来说,InfluxDB在磁盘占用和数据读取方面很占优势,而且随着数据规模的扩大,查询速度没有明显的下降。
针对时序数据来说,InfluxDB有明显的优势。

好,就这些了,希望对你有帮助。

本文github地址:

https://github.com/mike-zhang/mikeBlogEssays/blob/master/2017/20170212_InfluxDB和MySQL的读写对比测试.md

欢迎补充

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
3个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究
Python进阶者 Python进阶者
9个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这