IPQ4019 IPQ4029/802.11AC 2.4G&5G industrial wifi router support openWRT wallys
Industrial and automotive sectors benefit from 5G/industrial wifi router wallys
5G isn't just about improving mobile technology. Higher download speeds may enhance the smartphone browsing experience, but the applications where 5G's real impact will be significant are more likely yet to come. In this article, we discuss how 5G will affect the industrial and automotive industries, and how you can build 5G into your next design project.
Why 5G in industrial manufacturing?
Many of today's smart factories are limited by existing wired architectures that use proven networks such as Industrial Ethernet, Profinet and CANbus to connect various sensors, actuators and controllers in automation devices. This hard-wired connection makes even minor modifications to production facilities time-consuming and costly.
Previous generations of wireless networks, including faster 4G/LTE, have been unable to provide the real-time responsiveness and low latency needed for automatic control. In addition, the factory floor is a harsh work environment, and high electrical noise and interference pose significant challenges to the performance of many previous wireless communication technologies. The 5G enhanced network capabilities (see Figure 1) can address some of these issues and improve system efficiency and flexibility.
One of the key functions of all automated factories is monitoring. 5G brings with it large-scale machine-like communications (mMTC) capabilities to meet the needs of a wide range of wireless sensor networks (WSN). 5G is also more energy efficient than previous generations of wireless technology, which is crucial for extending the battery life of interconnected devices and minimizing maintenance.
For motion control and industrial robot applications requiring high accuracy and real time sensitivity, time sensitive network (TSN) using wired Industrial Ethernet has become the preferred networking technology. With 5G's ultra-reliable low-latency communications (URLLC), it is a viable wireless alternative, in addition to supporting cloud-based robotics applications.
Three related technologies that are being used in factory environments are virtual reality (VR), augmented reality (AR), and artificial intelligence (AI), which with the speed of 5G and URLLC can support processing at the edge. In this application scenario, power-intensive computing can be performed in the cloud, and less complex and low-cost devices can be deployed on site.
Implementing 5G presents both challenges and opportunities
In order to protect existing investments in prior wired and wireless network technologies, 5G projects must be seamlessly integrated into existing infrastructure, and one of the main challenges to date has been that indoor coverage has never been a priority for mobile network operators (MNO). The development of Open-RAN technology reduces the cost of ownership for 5G radio access networks (5G RAN), making deployment of proprietary 5G networks, also known as non-public networks (NPNS), a realistic possibility. For companies that like the idea, global regulators are making dedicated, cost-effective spectrum available for proprietary 5G networks. In addition, the proprietary 5G network can either be completely isolated from the public network or shared, depending on the operational requirements of the factory.
5G and the era of connected cars
While it may be years before Level 5 (L5) autonomous driving becomes a commercial reality, the industry is expected to be at the forefront of 5G deployment. But until then, the next car you buy will likely be Internet-enabled to manage systems like telematics, cellular Vehicle networking (C-V2X), and infotainment.
Today's interconnected cars can generate up to 4 terabytes of data a day, the equivalent of about 500 movies, and recent advances in C-V2X communications technology are already using this data in a variety of ways. For example, data from the engine management system is now sent to a remote service center for predictive maintenance; Information about local traffic conditions and weather can also be transmitted to public safety systems. Even driver behavior and vehicle miles traveled could provide data support for usage-based insurance programs.
Over the past five years, the 3rd Generation Partnership Program (3GPP) is the global standard body for cellular technologies, which include radio access, core networks and service capabilities that provide a complete system description for mobile telecommunications. 3GPP has been adding C-V2X capabilities in line with the evolution of cellular technologies (see Figure 3). The features of Release 16 paved the way for advanced Driver assistance systems (ADAS).
Although widespread adoption of self-driving cars seems some way off, there have been some very high-profile trials. Tesla, Google and BMW have all made headlines for reinforcing public expectations and pushing the boundaries of self-driving technology. Many high-end vehicles already have some degree of autonomous driving capability, some even reaching level 3 (L3), which also relies on C-V2X technology.
While 4G/LTE networks can also support many of these applications, the increasing volume of shared data is putting increasing pressure on available bandwidth. In addition, as critical on-board safety and energy management systems become more complex, low latency has become even more important. Network speed and cloud-to-edge processing power must support artificial reflex-level latency to enable a higher degree of autonomous driving. Similarly, for more complex ADAS, connected cars must respond in real time to events around them, whereas current wireless networks are reaching their limits and are increasingly a barrier to development. Without 5G, there will be no self-driving cars.
Most 5G network deployments are focused on using 3GPP's 5G New Air Port Independent Networking (5G NR NSA) Version 15 specification to upgrade 4G/LTE, making it possible to roll out a limited range of 5G services. However, the true potential of 5G is based on the deployment of 3GPP Version 16 and beyond, version 17, and applications such as self-driving cars and factory automation will only really become a reality when the next wireless network with this level of performance can be easily accessed. The initial rollout of 5G has been somewhat cautious, influenced by the global coronavirus pandemic. The rollout of the second wave of 5G networks will certainly accelerate demand for some yet to be developed for widespread applications.
Wallys keeps up with Qualcomm pace and is constantly releasing new products.Wallys routerboards DR40X9 which could support 5G frequency range.It’s a router board equipped with IPQ4019 chipset.
The IPQ4019 was the industry's first single-chip Wi-Fi system-on-chip (SoC) to bring Wave-2 802.11ac features to a variety of home and enterprise networking products. The highly-integrated, single-chip design combines dual-band 11ac, advanced Wi-Fi features and network processing in a variety of configurations for high-performance, power-efficient and cost-effective network infrastructure products.
The IPQ4019 is an ultra low power SoC with integrated RF transceiver that supports both AC and DC link rates for high speed data transfers between client devices and access points. It also includes a sophisticated antenna control block with automatic gain control (AGC), multi antenna selection for diversity reception, adaptive antenna array pattern matching for multipath mitigation, transmit diversity support, and enhanced isolation mode with multiple failover algorithms.
The IPQ4019 is ideally suited for applications such as enterprise WLANs, residential gateways, industrial automation networks, video surveillance systems and other embedded solutions where low power consumption is critical.
Below are the main information for your quick knowledge, Featuring with industrial-grade IPQ4019/IPQ4029 chipset Integrated with 2x 2 5G high power Radio module and 2x2 2.4G high power Radio module Support 4.940GHz to 5.825GHz Frequency Range Support 2.400GHz to 2.482GHz Support 2 x 5G MMCX Connectors and 2x2.4G MMCX Support 5MHz/10MHz/20MHz/40MHz/80MHz Bandwidth Support 11ABGN/AC Support fixed data rate
The 40x9 with RoHS compliance ensure a high level protection of human health and the environment from risks that can be posed by chemicals.Our Firmware supports all the modules of Quectel.
Click below the link you can find more information like Absolute Maximum Rating,Hardware Specifications,Radio TX Specifications,Radio RX Specifications,Interface MAP,and get datasheet of DR40x9 from the website. https://www.wallystech.com/Routerboard/DR40X9-Qualcomm-IPQ-4019-4029-DUAL-BAND-802.11AC-WAVE2-MU-MIMO-ONBOARD-WIFI-RADIO-EMBEDDED-BOARD-supporting-LTE.html
For more information or get an sample for it,welcome email us for explore more.
Wallys Communications(Suzhou) Co.,Ltd,known as a specialist in researching and developing and producing of wireless communication products,have star product as Routerboard,Network Card,Industrial Wireless AP,Antenna etc,is one of the suppliers of the Facebook.
With the professional R&D teams which possess over 15 years experience,we could not only providing OEM/ODM/JDM services,but also have the ability to supporting customization service for you.From idea design to manufacture to put the product into market.
Email us by sales1@wallystech.com Visit our website:https://www.wallystech.com/