Elasticsearch源码分析—线程池(十一) ——就是从队列里处理请求

Stella981
• 阅读 688

Elasticsearch源码分析—线程池(十一)

转自:https://www.felayman.com/articles/2017/11/10/1510291570687.html

线程池

每个节点都有一些线程池来优化线程内存的消耗,按节点来配置管理。有些线程池还拥有与之关联的队列配置,用来允许挂住一些未处理的请求,而不是丢弃它。

Elasticsearch对线程池的处理的源码在org.elasticsearch.node.Node中,核心代码为:

final ThreadPool threadPool = new ThreadPool(settings, executorBuilders.toArray(new ExecutorBuilder[0]));

其具体实现为:

super(settings);

    assert Node.NODE_NAME_SETTING.exists(settings);

    final Map<String, ExecutorBuilder> builders = new HashMap<>();
    final int availableProcessors = EsExecutors.boundedNumberOfProcessors(settings); final int halfProcMaxAt5 = halfNumberOfProcessorsMaxFive(availableProcessors); final int halfProcMaxAt10 = halfNumberOfProcessorsMaxTen(availableProcessors); final int genericThreadPoolMax = boundedBy(4 * availableProcessors, 128, 512); builders.put(Names.GENERIC, new ScalingExecutorBuilder(Names.GENERIC, 4, genericThreadPoolMax, TimeValue.timeValueSeconds(30))); builders.put(Names.INDEX, new FixedExecutorBuilder(settings, Names.INDEX, availableProcessors, 200)); builders.put(Names.BULK, new FixedExecutorBuilder(settings, Names.BULK, availableProcessors, 200)); // now that we reuse bulk for index/delete ops builders.put(Names.GET, new FixedExecutorBuilder(settings, Names.GET, availableProcessors, 1000)); builders.put(Names.SEARCH, new FixedExecutorBuilder(settings, Names.SEARCH, searchThreadPoolSize(availableProcessors), 1000)); builders.put(Names.MANAGEMENT, new ScalingExecutorBuilder(Names.MANAGEMENT, 1, 5, TimeValue.timeValueMinutes(5))); // no queue as this means clients will need to handle rejections on listener queue even if the operation succeeded // the assumption here is that the listeners should be very lightweight on the listeners side builders.put(Names.LISTENER, new FixedExecutorBuilder(settings, Names.LISTENER, halfProcMaxAt10, -1)); builders.put(Names.FLUSH, new ScalingExecutorBuilder(Names.FLUSH, 1, halfProcMaxAt5, TimeValue.timeValueMinutes(5))); builders.put(Names.REFRESH, new ScalingExecutorBuilder(Names.REFRESH, 1, halfProcMaxAt10, TimeValue.timeValueMinutes(5))); builders.put(Names.WARMER, new ScalingExecutorBuilder(Names.WARMER, 1, halfProcMaxAt5, TimeValue.timeValueMinutes(5))); builders.put(Names.SNAPSHOT, new ScalingExecutorBuilder(Names.SNAPSHOT, 1, halfProcMaxAt5, TimeValue.timeValueMinutes(5))); builders.put(Names.FETCH_SHARD_STARTED, new ScalingExecutorBuilder(Names.FETCH_SHARD_STARTED, 1, 2 * availableProcessors, TimeValue.timeValueMinutes(5))); builders.put(Names.FORCE_MERGE, new FixedExecutorBuilder(settings, Names.FORCE_MERGE, 1, -1)); builders.put(Names.FETCH_SHARD_STORE, new ScalingExecutorBuilder(Names.FETCH_SHARD_STORE, 1, 2 * availableProcessors, TimeValue.timeValueMinutes(5))); for (final ExecutorBuilder<?> builder : customBuilders) { if (builders.containsKey(builder.name())) { throw new IllegalArgumentException("builder with name [" + builder.name() + "] already exists"); } builders.put(builder.name(), builder); } this.builders = Collections.unmodifiableMap(builders); threadContext = new ThreadContext(settings); final Map<String, ExecutorHolder> executors = new HashMap<>(); for (@SuppressWarnings("unchecked") final Map.Entry<String, ExecutorBuilder> entry : builders.entrySet()) { final ExecutorBuilder.ExecutorSettings executorSettings = entry.getValue().getSettings(settings); final ExecutorHolder executorHolder = entry.getValue().build(executorSettings, threadContext); if (executors.containsKey(executorHolder.info.getName())) { throw new IllegalStateException("duplicate executors with name [" + executorHolder.info.getName() + "] registered"); } logger.debug("created thread pool: {}", entry.getValue().formatInfo(executorHolder.info)); executors.put(entry.getKey(), executorHolder); } executors.put(Names.SAME, new ExecutorHolder(DIRECT_EXECUTOR, new Info(Names.SAME, ThreadPoolType.DIRECT))); this.executors = unmodifiableMap(executors); this.scheduler = new ScheduledThreadPoolExecutor(1, EsExecutors.daemonThreadFactory(settings, "scheduler"), new EsAbortPolicy()); this.scheduler.setExecuteExistingDelayedTasksAfterShutdownPolicy(false); this.scheduler.setContinueExistingPeriodicTasksAfterShutdownPolicy(false); this.scheduler.setRemoveOnCancelPolicy(true); TimeValue estimatedTimeInterval = ESTIMATED_TIME_INTERVAL_SETTING.get(settings); this.cachedTimeThread = new CachedTimeThread(EsExecutors.threadName(settings, "[timer]"), estimatedTimeInterval.millis()); this.cachedTimeThread.start(); 


从源码中可以看到,Elasticsearch的线程池基本有许多不同名称的线程池,这些线程池的命名都缓存在一个常量静态内部类ThreadPool.Names中,源码如下:

~~~java
public static class Names { public static final String SAME = "same"; public static final String GENERIC = "generic"; public static final String LISTENER = "listener"; public static final String GET = "get"; public static final String INDEX = "index"; public static final String BULK = "bulk"; public static final String SEARCH = "search"; public static final String MANAGEMENT = "management"; public static final String FLUSH = "flush"; public static final String REFRESH = "refresh"; public static final String WARMER = "warmer"; public static final String SNAPSHOT = "snapshot"; public static final String FORCE_MERGE = "force_merge"; public static final String FETCH_SHARD_STARTED = "fetch_shard_started"; public static final String FETCH_SHARD_STORE = "fetch_shard_store"; } 

而且Elasticsearch还将这些线程池分成了三个类型,分别为direct,fixed,scaling,这些类别也缓存在改常量类中,源码为:

public enum ThreadPoolType {
        DIRECT("direct"),
        FIXED("fixed"),
        SCALING("scaling"); private final String type; //省略getter/setter 

默认地,Elasticsearch将上述的各个线程池采用不同的类型,源码如下:

static {
        HashMap<String, ThreadPoolType> map = new HashMap<>();
        map.put(Names.SAME, ThreadPoolType.DIRECT);
        map.put(Names.GENERIC, ThreadPoolType.SCALING);
        map.put(Names.LISTENER, ThreadPoolType.FIXED);
        map.put(Names.GET, ThreadPoolType.FIXED);
        map.put(Names.INDEX, ThreadPoolType.FIXED);
        map.put(Names.BULK, ThreadPoolType.FIXED);
        map.put(Names.SEARCH, ThreadPoolType.FIXED);
        map.put(Names.MANAGEMENT, ThreadPoolType.SCALING);
        map.put(Names.FLUSH, ThreadPoolType.SCALING);
        map.put(Names.REFRESH, ThreadPoolType.SCALING);
        map.put(Names.WARMER, ThreadPoolType.SCALING);
        map.put(Names.SNAPSHOT, ThreadPoolType.SCALING);
        map.put(Names.FORCE_MERGE, ThreadPoolType.FIXED);
        map.put(Names.FETCH_SHARD_STARTED, ThreadPoolType.SCALING);
        map.put(Names.FETCH_SHARD_STORE, ThreadPoolType.SCALING);
        THREAD_POOL_TYPES = Collections.unmodifiableMap(map);
    }

各线程池功能说明

  • GENERIC

    用于通用的操作(例如:后台节点发现),线程池类型为 scaling

  • INDEX

    用于index/delete操作,线程池类型为 fixed, 大小的为处理器数量,队列大小为200,最大线程数为 1 + 处理器数量

  • BULK

    用于bulk操作,线程池类型为 fixed, 大小的为处理器数量,队列大小为200,该池的最大线程数为 1 + 处理器数量

  • GET

    用于get操作。线程池类型为 fixed,大小的为处理器数量,队列大小为1000。

  • SEARCH

    用于count/search/suggest操作。线程池类型为 fixed, 大小的为 int((处理器数量 3) / 2) +1,队列大小为1000

  • MANAGEMENT

    官方暂未说明(新版本才有)

  • LISTENER

    主要用于Java客户端线程监听器被设置为true时执行动作。线程池类型为 scaling,最大线程数为min(10, (处理器数量)/2)

  • FLUSH

    用于flush操作。线程池类型为 scaling,线程空闲保持存活时间为5分钟,最大线程数为min(10, (处理器数量)/2)

  • REFRESH

    用于refresh操作。线程池类型为 scaling,线程空闲保持存活时间为5分钟,最大线程数为min(10, (处理器数量)/2)

  • WARMER

    用于segment warm-up操作。线程池类型为 scaling,线程保持存活时间为5分钟,最大线程数为min(5, (处理器数量)/2)

  • SNAPSHOT

    用于snaphost/restore操作。线程池类型为 scaling,线程保持存活时间为5分钟,最大线程数为min(5, (处理器数量)/2)

  • FETCH_SHARD_STARTED

    官方暂未说明(新版本才有)

  • FORCE_MERGE

    官方暂未说明(新版本才有)

  • FETCH_SHARD_STORE

    官方暂未说明(新版本才有)

  • SAME

    官方暂未说明(新版本才有)

各线程类型说明

  • direct

    此类线程是一种不支持关闭的线程,就意味着一旦使用,则会一直存活下去.

  • fixed

    此类线程池拥有固定数量的线程来处理请求,在没有空闲线程时请求将被挂在队列中(可选配)

  • scaling

    此类线程池拥有的线程数量是动态的。这个数字介于core和max参数的配置之间变化

这些线程池的创建如果在调试源码的时候日志级别更改为DEBUG,也是可以看出的,如下:

[2017-09-27T14:31:47,558][DEBUG][o.e.t.ThreadPool         ] [x2LMQHg] created thread pool: name [force_merge], size [1], queue size [unbounded]
[2017-09-27T14:31:47,560][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [fetch_shard_started], core [1], max [16], keep alive [5m] [2017-09-27T14:31:47,561][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [listener], size [4], queue size [unbounded] [2017-09-27T14:31:47,565][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [index], size [8], queue size [200] [2017-09-27T14:31:47,565][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [refresh], core [1], max [4], keep alive [5m] [2017-09-27T14:31:47,566][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [generic], core [4], max [128], keep alive [30s] [2017-09-27T14:31:47,566][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [warmer], core [1], max [4], keep alive [5m] [2017-09-27T14:31:47,566][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [search], size [13], queue size [1k] [2017-09-27T14:31:47,567][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [flush], core [1], max [4], keep alive [5m] [2017-09-27T14:31:47,567][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [fetch_shard_store], core [1], max [16], keep alive [5m] [2017-09-27T14:31:47,567][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [management], core [1], max [5], keep alive [5m] [2017-09-27T14:31:47,568][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [get], size [8], queue size [1k] [2017-09-27T14:31:47,568][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [bulk], size [8], queue size [200] [2017-09-27T14:31:47,568][DEBUG][o.e.t.ThreadPool ] [x2LMQHg] created thread pool: name [snapshot], core [1], max [4], keep alive [5m] 

参考

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
3个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
9个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这