hash表现形式上有些像pyhton中的dict,可以存储一组关联性较强的数据 , redis中Hash在内存中的存储格式如下图:
hset(name, key, value)
# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)
# 参数: # name,redis的name # key,name对应的hash中的key # value,name对应的hash中的value # 注: # hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)
View Code
hmset(name, mapping)
# 在name对应的hash中批量设置键值对
# 参数: # name,redis的name # mapping,字典,如:{'k1':'v1', 'k2': 'v2'} # 如: # r.hmset('xx', {'k1':'v1', 'k2': 'v2'})
View Code
hget(name,key)
# 在name对应的hash中获取根据key获取value
# 在name对应的hash中获取多个key的值
# 参数: # name,reids对应的name # keys,要获取key集合,如:['k1', 'k2', 'k3'] # *args,要获取的key,如:k1,k2,k3 # 如: # r.mget('xx', ['k1', 'k2']) # 或 # print r.hmget('xx', 'k1', 'k2')
View Code
hgetall(name)
# 获取name对应``hash``的所有键值
hlen(name)
# 获取name对应的hash中键值对的个数
hkeys(name)
# 获取name对应的hash中所有的key的值
hvals(name)
# 获取name对应的hash中所有的value的值
hexists(name, key)
# 检查name对应的hash是否存在当前传入的key
hdel(name,*keys)
# 将name对应的hash中指定key的键值对删除
hincrby(name, key, amount=1)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数: # name,redis中的name # key, hash对应的key # amount,自增数(整数)
View Code
hincrbyfloat(name, key, amount=1.0)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数: # name,redis中的name # key, hash对应的key # amount,自增数(浮点数) # 自增name对应的hash中的指定key的值,不存在则创建key=amount
View Code
hscan(name, cursor=0, match=None, count=None)
# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆
# 参数: # name,redis的name # cursor,游标(基于游标分批取获取数据) # match,匹配指定key,默认None 表示所有的key # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如: # 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None) # 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None) # ... # 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕
View Code
hscan_iter(name, match=None, count=None)
# 利用yield封装hscan创建生成器,实现分批去redis中获取数据
# 参数: # match,匹配指定key,默认None 表示所有的key # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如: # for item in r.hscan_iter('xx'): # print item
View Code