Redis4.0新特性(二)

Stella981
• 阅读 516

Redis4.0新增了非常实用的lazy free特性,从根本上解决Big Key(主要指定元素较多集合类型Key)删除的风险。笔者在redis运维中也遇过几次Big Key删除带来可用性和性能故障。
本文分为以下几节说明redis lazy free:

  • lazy free的定义
  • 我们为什么需要lazy free
  • lazy free的使用
  • lazy free的监控
  • lazy free实现的简单分析

1 lazy free的定义

lazy free可译为惰性删除或延迟释放;当删除键的时候,redis提供异步延时释放key内存的功能,把key释放操作放在bio(Background I/O)单独的子线程处理中,减少删除big key对redis主线程的阻塞。有效地避免删除big key带来的性能和可用性问题。

2 我们为什么需要lazy free

Redis是single-thread程序(除少量的bio任务),当运行一个耗时较大的请求时,会导致所有请求排队等待redis不能响应其他请求,引起性能问题,甚至集群发生故障切换。而redis删除大的集合键时,就属于这类比较耗时的请求。通过测试来看,删除一个100万个元素的集合键,耗时约1000ms左右。以下测试,删除一个100万个字段的hash键,耗时1360ms;处理此DEL请求期间,其他请求完全被阻塞。

删除一个100万字段的hash键
127.0.0.1:6379> HLEN hlazykey
(integer) 1000000
127.0.0.1:6379> del hlazykey
(integer) 1
(1.36s)
127.0.0.1:6379> SLOWLOG get
1) 1) (integer) 0
 2) (integer) 1501314385
 3) (integer) 1360908
 4) 1) "del"
 2) "hlazykey"
 5) "127.0.0.1:35595"
 6) “"

测试估算,可参考;和硬件环境、Redis版本和负载等因素有关

Redis4.0新特性(二)

redis4.0有lazy free功能后,这类主动或被动的删除big key时,和一个O(1)指令的耗时一样,亚毫秒级返回; 把真正释放redis元素耗时动作交由bio后台任务执行。在redis4.0前,没有lazy free功能;DBA只能通过取巧的方法,类似scan big key,每次删除100个元素;但在面对“被动”删除键的场景,这种取巧的删除就无能为力。
例如:我们生产Redis Cluster大集群,业务缓慢地写入一个带有TTL的2000多万个字段的Hash键,当这个键过期时,redis开始被动清理它时,导致redis被阻塞20多秒,当前分片主节点因20多秒不能处理请求,并发生主库故障切换。

我有几张阿里云幸运券分享给你,用券购买或者升级阿里云相应产品会有特惠惊喜哦!把想要买的产品的幸运券都领走吧!快下手,马上就要抢光了。

3 lazy free的使用

lazy free的使用分为2类:第一类是与DEL命令对应的主动删除,第二类是过期key删除、maxmemory key驱逐淘汰删除。

主动删除键使用lazy free

UNLINK命令

UNLINK命令是与DEL一样删除key功能的lazy free实现。唯一不同时,UNLINK在删除集合类键时,如果集合键的元素个数大于64个(详细后文),会把真正的内存释放操作,给单独的bio来操作。示例如下:使用UNLINK命令删除一个大键mylist, 它包含200万个元素,但用时只有0.03毫秒

127.0.0.1:7000> LLEN mylist
(integer) 2000000
127.0.0.1:7000> UNLINK mylist
(integer) 1
127.0.0.1:7000> SLOWLOG get
1) 1) (integer) 1
 2) (integer) 1505465188
 3) (integer) 30
 4) 1) "UNLINK"
 2) "mylist"
 5) "127.0.0.1:17015"
 6) ""

注意:DEL命令,还是阻塞的删除操作。

FLUSHALL/FLUSHDB ASYNC

通过对FLUSHALL/FLUSHDB添加ASYNC异步清理选项,redis在清理整个实例或DB时,操作都是异步的。

127.0.0.1:7000> DBSIZE
(integer) 1812295
127.0.0.1:7000> flushall //同步清理实例数据,180万个key耗时1020毫秒
OK
(1.02s)
127.0.0.1:7000> DBSIZE
(integer) 1812637
127.0.0.1:7000> flushall async //异步清理实例数据,180万个key耗时约9毫秒
OK
127.0.0.1:7000> SLOWLOG get
 1) 1) (integer) 2996109
 2) (integer) 1505465989
 3) (integer) 9274 //指令运行耗时9.2毫秒
 4) 1) "flushall" 
 2) "async"
 5) "127.0.0.1:20110"
 6) ""

被动删除键使用lazy free

lazy free应用于被动删除中,目前有4种场景,每种场景对应一个配置参数; 默认都是关闭。

lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
slave-lazy-flush no

注意:从测试来看lazy free回收内存效率还是比较高的; 但在生产环境请结合实际情况,开启被动删除的lazy free 观察redis内存使用情况。

lazyfree-lazy-eviction

针对redis内存使用达到maxmeory,并设置有淘汰策略时;在被动淘汰键时,是否采用lazy free机制;
因为此场景开启lazy free, 可能使用淘汰键的内存释放不及时,导致redis内存超用,超过maxmemory的限制。此场景使用时,请结合业务测试。

lazyfree-lazy-expire

针对设置有TTL的键,达到过期后,被redis清理删除时是否采用lazy free机制;
此场景建议开启,因TTL本身是自适应调整的速度。

lazyfree-lazy-server-del

针对有些指令在处理已存在的键时,会带有一个隐式的DEL键的操作。如rename命令,当目标键已存在,redis会先删除目标键,如果这些目标键是一个big key,那就会引入阻塞删除的性能问题。 此参数设置就是解决这类问题,建议可开启。

slave-lazy-flush

针对slave进行全量数据同步,slave在加载master的RDB文件前,会运行flushall来清理自己的数据场景,
参数设置决定是否采用异常flush机制。如果内存变动不大,建议可开启。可减少全量同步耗时,从而减少主库因输出缓冲区爆涨引起的内存使用增长。

4 lazy free的监控

lazy free能监控的数据指标,只有一个值:lazyfree_pending_objects,表示redis执行lazy free操作,在等待被实际回收内容的键个数。并不能体现单个大键的元素个数或等待lazy free回收的内存大小。
所以此值有一定参考值,可监测redis lazy free的效率或堆积键数量; 比如在flushall async场景下会有少量的堆积。

5 lazy free实现的简单分析

antirez为实现lazy free功能,对很多底层结构和关键函数都做了修改;该小节只介绍lazy free的功能实现逻辑;代码主要在源文件lazyfree.c和bio.c中。

UNLINK命令

unlink命令入口函数unlinkCommand()和del调用相同函数delGenericCommand()进行删除KEY操作,使用lazy标识是否为lazyfree调用。如果是lazyfree,则调用dbAsyncDelete()函数。
但并非每次unlink命令就一定启用lazy free,redis会先判断释放KEY的代价(cost),当cost大于LAZYFREE_THRESHOLD才进行lazy free.
释放key代价计算函数lazyfreeGetFreeEffort(),集合类型键,且满足对应编码,cost就是集合键的元数个数,否则cost就是1.
举例:
1一个包含100元素的list key, 它的free cost就是100
2 一个512MB的string key, 它的free cost是1
所以可以看出,redis的lazy free的cost计算主要时间复杂度相关。

lazyfreeGetFreeEffort()函数代码

size_t lazyfreeGetFreeEffort(robj *obj) {
 if (obj->type == OBJ_LIST) { 
 quicklist *ql = obj->ptr;
 return ql->len;
 } else if (obj->type == OBJ_SET && obj->encoding == OBJ_ENCODING_HT) {
 dict *ht = obj->ptr;
 return dictSize(ht);
 } else if (obj->type == OBJ_ZSET && obj->encoding == OBJ_ENCODING_SKIPLIST){
 zset *zs = obj->ptr;
 return zs->zsl->length;
 } else if (obj->type == OBJ_HASH && obj->encoding == OBJ_ENCODING_HT) {
 dict *ht = obj->ptr;
 return dictSize(ht);
 } else {
 return 1; /* Everything else is a single allocation. */
 }
}

dbAsyncDelete()函数的部分代码

#define LAZYFREE_THRESHOLD 64 //根据FREE一个key的cost是否大于64,用于判断是否进行lazy free调用
int dbAsyncDelete(redisDb *db, robj *key) {
 /* Deleting an entry from the expires dict will not free the sds of
 * the key, because it is shared with the main dictionary. */
 if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr); //从expires中直接删除key

 dictEntry *de = dictUnlink(db->dict,key->ptr); //进行unlink处理,但不进行实际free操作
 if (de) {
 robj *val = dictGetVal(de);
 size_t free_effort = lazyfreeGetFreeEffort(val); //评估free当前key的代价

 /* If releasing the object is too much work, let's put it into the
 * lazy free list. */
 if (free_effort > LAZYFREE_THRESHOLD) { //如果free当前key cost>64, 则把它放在lazy free的list, 使用bio子线程进行实际free操作,不通过主线程运行
 atomicIncr(lazyfree_objects,1); //待处理的lazyfree对象个数加1,通过info命令可查看
 bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL); 
 dictSetVal(db->dict,de,NULL);
 }
 }

}

在bio中实际调用lazyfreeFreeObjectFromBioThread()函数释放key

void lazyfreeFreeObjectFromBioThread(robj *o) {
 decrRefCount(o); //更新对应引用,根据不同类型,调用不同的free函数
 atomicDecr(lazyfree_objects,1); //完成key的free,更新待处理lazyfree的键个数
}

flushall/flushdb async命令

当flushall/flushdb带上async,函数emptyDb()调用emptyDbAsync()来进行整个实例或DB的lazy free逻辑处理。
emptyDbAsync处理逻辑如下:

/* Empty a Redis DB asynchronously. What the function does actually is to
 * create a new empty set of hash tables and scheduling the old ones for
 * lazy freeing. */
void emptyDbAsync(redisDb *db) {
 dict *oldht1 = db->dict, *oldht2 = db->expires; //把db的两个hash tables暂存起来
 db->dict = dictCreate(&dbDictType,NULL); //为db创建两个空的hash tables
 db->expires = dictCreate(&keyptrDictType,NULL);
 atomicIncr(lazyfree_objects,dictSize(oldht1)); //更新待处理lazyfree的键个数,加上db的key个数
 bioCreateBackgroundJob(BIO_LAZY_FREE,NULL,oldht1,oldht2);//加入到bio list
}

在bio中实际调用lazyfreeFreeDatabaseFromBioThread函数释放db

void lazyfreeFreeDatabaseFromBioThread(dict *ht1, dict *ht2) {
 size_t numkeys = dictSize(ht1);
 dictRelease(ht1);
 dictRelease(ht2);
 atomicDecr(lazyfree_objects,numkeys);//完成整个DB的free,更新待处理lazyfree的键个数 
}

被动删除键使用lazy free

被动删除4个场景,redis在每个场景调用时,都会判断对应的参数是否开启,如果参数开启,则调用以上对应的lazy free函数处理逻辑实现。

总结

因为Redis是单个主线程处理,antirez一直强调”Lazy Redis is better Redis”。而lazy free的本质就是把某些cost较高的(主要时间复制度,占用主线程cpu时间片)较高删除操作,从redis主线程剥离,让bio子线程来处理,极大地减少主线阻塞时间。从而减少删除导致性能和稳定性问题。

原文链接

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
5个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
11个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这