Python中JSON的基本使用_Just do it !

Bill78
• 阅读 1649

JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式。Python3 中可以使用 json 模块来对 JSON 数据进行编解码,它主要提供了四个方法: dumpsdumploadsload

dump和dumps

dumpdumpspython对象进行序列化。将一个Python对象进行JSON格式的编码。

dump函数:

json.dump(obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

obj: 表示是要序列化的对象。

fp: 文件描述符,将序列化的str保存到文件中。json模块总是生成str对象,而不是字节对象;因此,fp.write()必须支持str输入。

skipkeys: 默认为False,如果skipkeysTrue,(默认值:False),则将跳过不是基本类型(str,int,float,bool,None)的dict键,不会引发TypeError

ensure_ascii: 默认值为True,能将所有传入的非ASCII字符转义输出。如果ensure_asciiFalse,则这些字符将按原样输出。

check_circular:默认值为True,如果check_circularFalse,则将跳过对容器类型的循环引用检查,循环引用将导致OverflowError

allow_nan: 默认值为True,如果allow_nanFalse,则严格遵守JSON规范,序列化超出范围的浮点值(nan,inf,-inf)会引发ValueError。 如果allow_nanTrue,则将使用它们的JavaScript等效项(NaN,Infinity,-Infinity)。

indent: 设置缩进格式,默认值为None,选择的是最紧凑的表示。如果indent是非负整数或字符串,那么JSON数组元素和对象成员将使用该缩进级别进行输入;indent为0,负数或“”仅插入换行符;indent使用正整数缩进多个空格;如果indent是一个字符串(例如“\t”),则该字符串用于缩进每个级别。

separators: 去除分隔符后面的空格,默认值为None,如果指定,则分隔符应为(item_separator,key_separator)元组。如果缩进为None,则默认为(’,’,’:’);要获得最紧凑的JSON表示,可以指定(’,’,’:’)以消除空格。

default: 默认值为None,如果指定,则default应该是为无法以其他方式序列化的对象调用的函数。它应返回对象的JSON可编码版本或引发TypeError。如果未指定,则引发TypeError

sort_keys: 默认值为False,如果sort_keysTrue,则字典的输出将按键值排序。

dumps函数:

json.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

dumps函数不需要传文件描述符,其他的参数和dump函数的一样。

load和loads

loadloads反序列化方法,将json格式数据解码为python对象。

load函数:

json.load(fp, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw)

fp: 文件描述符,将fp(.read()支持包含JSON文档的文本文件或二进制文件)反序列化为Python对象。

object_hook: 默认值为None,object_hook是一个可选函数,此功能可用于实现自定义解码器。指定一个函数,该函数负责把反序列化后的基本类型对象转换成自定义类型的对象。

parse_float: 默认值为None,如果指定了parse_float,用来对JSON float字符串进行解码,这可用于为JSON浮点数使用另一种数据类型或解析器。

parse_int: 默认值为None,如果指定了parse_int,用来对JSON int字符串进行解码,这可以用于为JSON整数使用另一种数据类型或解析器。

parse_constant:默认值为None,如果指定了parse_constant,对-Infinity,Infinity,NaN字符串进行调用。如果遇到了无效的JSON符号,会引发异常。

如果进行反序列化(解码)的数据不是一个有效的JSON文档,将会引发 JSONDecodeError异常。

loads函数:

json.loads(s, *, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw)

s: 将s(包含JSON文档的str,bytes或bytearray实例)反序列化为Python对象。
encoding: 指定一个编码的格式。
loads也不需要文件描述符,其他参数的含义和load函数的一致。

格式转化表

JSON中的数据格式和Python中的数据格式转化关系如下:

JSON Python
object dict
array list
string str
number (int) int
number (real) float
true True
false False
null None

实例:

dump和dumps

import json

# dumps可以格式化所有的基本数据类型为字符串
data1 = json.dumps([])         # 列表
print(data1, type(data1))
data2 = json.dumps(2)          # 数字
print(data2, type(data2))
data3 = json.dumps('3')        # 字符串
print(data3, type(data3))
dict = {"name": "Tom", "age": 23}   # 字典
data4 = json.dumps(dict)
print(data4, type(data4))

with open("test.json", "w", encoding='utf-8') as f:
    # indent 超级好用,格式化保存字典,默认为None,小于0为零个空格
    f.write(json.dumps(dict, indent=4))
    json.dump(dict, f, indent=4)  # 传入文件描述符,和dumps一样的结果 

得到的输出结果如下:格式化所有的数据类型为str类型

[] <class 'str'>
2 <class 'str'>
"3" <class 'str'>
{"name": "Tom", "age": 23} <class 'str'>

test.json中的内容

{
    "name": "Tom",
    "age": 23 }

load和loads

import json

dict = '{"name": "Tom", "age": 23}'   # 将字符串还原为dict
data1 = json.loads(dict)
print(data1, type(data1))

with open("test.json", "r", encoding='utf-8') as f:
    data2 = json.loads(f.read())    # load的传入参数为字符串类型
    print(data2, type(data2))
    f.seek(0)                       # 将文件游标移动到文件开头位置
    data3 = json.load(f)
    print(data3, type(data3))

运行结果如下:

{'name': 'Tom', 'age': 23} <class 'dict'>
{'name': 'Tom', 'age': 23} <class 'dict'>
{'name': 'Tom', 'age': 23} <class 'dict'>

常见的错误:

读取多行的JSON文件

假如要读取一个多行的JSON文件:

{"坂": ["坂5742"]}
{"构": ["构6784"]}
{"共": ["共5171"]}
{"钩": ["钩94a9"]}
{"肮": ["肮80ae"]}
{"孤": ["孤5b64"]}

如果直接使用:

 with open(json_path, 'r') as f:
        json_data = json.load(f)

就会报错:抛出异常JSONDecodeError

json.decoder.JSONDecodeError: Extra data: line 2 column 1 (char 17)

表示数据错误,数据太多,第2行第一列
因为json只能读取一个文档对象,有两个解决办法
1、单行读取文件,一次读取一行文件。
2、保存数据源的时候,格式写为一个对象。

单行读取文件:

 with open(json_path, 'r') as f:
        for line in f.readlines():
            json_data = json.loads(line)

但是这种做法还有个问题,如果JSON文件中包含空行,还是会抛出JSONDecodeError异常

json.decoder.JSONDecodeError: Expecting value: line 2 column 1 (char 1)

可以先处理空行,再进行文件读取操作:

 for line in f.readlines():
        line = line.strip()   # 使用strip函数去除空行
        if len(line) != 0:
            json_data = json.loads(line)

合并为一个对象

json文件处理成一个对象文件。

{"dict": [
{"坂": ["坂5742"]},
{"构": ["构6784"]},
{"共": ["共5171"]},
{"钩": ["钩94a9"]},
{"肮": ["肮80ae"]},
{"孤": ["孤5b64"]}
]}

然后再用:

 with open(json_path, 'r') as f:
        json_data = json.loads(f.read())

总结:

json.dumps 将 Python 对象编码成 JSON 字符串
json.loads 将已编码的 JSON 字符串解码为 Python 对象
json.dumpjson.load,需要传入文件描述符,加上文件操作。
JSON内部的格式要注意,一个好的格式能够方便读取,可以用indent格式化。

参考链接:

https://docs.python.org/3.6/library/json.html#py-to-json-table
https://www.cnblogs.com/tjuyuan/p/6795860.html
http://liuzhijun.iteye.com/blog/1859857
https://blog.csdn.net/qq_22073849/article/details/78192289
http://www.runoob.com/python3/python3-json.html

本文转自 https://blog.csdn.net/whjkm/article/details/81159888,如有侵权,请联系删除。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Stella981 Stella981
3年前
Python JSON
JSON函数使用JSON函数需要导入json库:importjson。函数描述json.dumps将Python对象编码成JSON字符串json.loads将已编码的JSON字符串解码为Python对象json.dumpsjson.dumps用于将
Wesley13 Wesley13
3年前
4cast
4castpackageloadcsv.KumarAwanish发布:2020122117:43:04.501348作者:KumarAwanish作者邮箱:awanish00@gmail.com首页:
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
unity将 -u4E00 这种 编码 转汉字 方法
 unity中直接使用 JsonMapper.ToJson(对象),取到的字符串,里面汉字可能是\\u4E00类似这种其实也不用转,服务器会通过类似fastjson发序列化的方式,将json转对象,获取对象的值就是中文但是有时服务器要求将传参中字符串中类似\\u4E00这种转汉字,就需要下面 publ
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
Bill78
Bill78
Lv1
日落里有间小商店贩卖橘黄的温柔。
文章
32
粉丝
0
获赞
0