3D数学

Wesley13
• 阅读 803

4D向量和4x4矩阵不过是对3D运算的一种方便的记忆而已。

4D齐次空间

4D向量有4个分量,前3个是标准的x,y和z分量,第4个是w,有时称作齐次坐标。

为了理解标准3D坐标是怎样扩展到4D坐标的,让我们先看一下2D中的齐次坐标,它的形式为(x, y, w)。想象在3D中w=1处的标准2D平面,实际的2D点(x, y)用齐次坐标表示为(x, y, 1),对于那些不在w=1平面上的点,则将它们投影到w=1平面上。所以齐次坐标(x, y, w) 映射的实际2D点为(x/w, y/w)。如图9.2所示:

3D数学

因此,给定一个2D点(x, y),齐次空间中有无数多个点与之对应。所有点的形式都为(kx, ky, k),k≠0。这些点构成一条穿过齐次原点的直线。

当w=0时,除法未定义,因此不存在实际的2D点。然而,可以将2D齐次点(x, y, 0)解释为"位于无穷远的点",它描述了一个方向而不是一个位置。

4D坐标的基本思想相同,实际的3D点被认为是在4D中w=1"平面"上。4D点的形式为(x, y, z, w),将4D点投影到这个"平面"上得到相应的实际3D点(x/w, y/w, z/w)。w=0时4D点表示"无限远点",它描述了一个方向而不是一个位置。

4 X 4 平移矩阵

3x3变换矩阵表示的是线性变换,不包括平移。因为矩阵乘法的性质,零向量总是变换成零向量。因此,任何能用矩阵乘法表达的变换都不包含平移。这很不幸,因为矩阵乘法和它的逆是一种非常方便的工具,不仅可以用来将复杂的变换组合成简单的单一变换,还可以操纵嵌入式坐标系间的关系。如果能找到一种方法将3x3变换矩阵进行扩展,使它能处理平移,这将是一件多么美妙的事情啊。4x4矩阵恰好提供了一种数学上的"技巧"使我们能够做到这一点。

暂时假设w总是等于1。那么,标准3D向量[x, y, z]对应的4D向量为[x, y, z, 1]。任意3x3变换矩阵在4D中表示为:

3D数学

任意一个形如[x, y, z, 1]的向量乘以上面形式的矩阵,其结果和标准的3x3情况相同,只是结果是用w=1的4D向量表示的:

3D数学

现在,到了最有趣的部分。在4D中,仍然可以用矩阵乘法来表达平移,如公式9.10所示,而在3D中是不可能的:

3D数学

记住,即使是在4D中,矩阵乘法仍然是线性变换。矩阵乘法不能表达4D中的"平移",4D零向量也将总是被变换成零向量。这个技巧之所以能在3D中平移点是因为我们实际上是在切变4D空间。与实际3D空间相对应的4D中的"平面"并没有穿过4D中的原点。因此,我们能通过切变4D空间来实现3D中的平移。

设想没有平移的变换后接一个有平移的变换会发生什么情况呢?设R为旋转矩阵(实际上,R还能包含其他的3D线性变换,但现在假设R只包含旋转),T为形如公式9.10的变换矩阵:

3D数学

将向量v先旋转再平移,新的向量**v'**计算如下:

v' = vRT

注意,变换的顺序是非常重要的。因为我们使用的是行向量,变换的顺序必须和矩阵乘法的顺序相吻合(从左到右),先旋转后平移。

和3x3矩阵一样,能将两个矩阵连接成单个矩阵,记作矩阵M,如下:

= RT

v' = vRT = v(RT) = vM

观察M的内容:

3D数学

注意到,M的上边3x3部分是旋转部分,最下一行是平移部分。最右一列为[0, 0, 0, 1]T。逆向利用这些信息,能将任意4x4矩阵分解为线性变换部分和平移部分。将平移向量[△x, △y, △z]记作t,则M可简写为:

3D数学

接下来看w=0所表示的 "无穷远点"。它乘以一个由"标准"3x3变换矩阵扩展成的4x4矩阵(不包含平移),得到:

3D数学

换句话说,当一个形如[x, y, z, 0]的无穷远点乘以一个包含旋转、缩放等的变换矩阵,将会发生预期的变换。结果仍是一个无穷远点,形式为[x, y, z, 0]。

一个无穷远点经过包含平移的变换可得到:

3D数学

注意到结果是一样的(和没有平移的情况相比)。换句话说,4D向量中的w分量能够"开关"  4x4 矩阵的平移部分。这个现象是非常有用的,因为有些向量代表“位置”,应当平移,而有些向量代表“方向”,如表面的法向量,不应该平移。从几何意义上说,能将第一类数据当作"点",第二类数据当作"向量".

使用4x4矩阵的一个原因是4x4变换矩阵能包含平移。当我们仅为这个目的使用4x4矩阵时,矩阵的最后一列总是[0, 0, 0, 1]T。既然是这样,为什么不去掉最后一列而改用4x3矩阵呢?根据线性代数法则,由于多种原因,4x3矩阵不符合我们的需求,如下:

(1)不能用一个4x3矩阵乘以另一个4x3矩阵。

(2)4x3矩阵没有逆矩阵,因为它不是一个方阵。

(3)一个4D向量乘以4x3矩阵时,结果是一个3D向量。

为了严格遵守线性代数法则,我们加上了第4列。当然在代码中,可以不受代数法则的约束。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Wesley13 Wesley13
3年前
PPDB:今晚老齐直播
【今晚老齐直播】今晚(本周三晚)20:0021:00小白开始“用”飞桨(https://www.oschina.net/action/visit/ad?id1185)由PPDE(飞桨(https://www.oschina.net/action/visit/ad?id1185)开发者专家计划)成员老齐,为深度学习小白指点迷津。
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
Opencv中Mat矩阵相乘——点乘、dot、mul运算详解
Opencv中Mat矩阵相乘——点乘、dot、mul运算详解2016年09月02日00:00:36 \牧野(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fme.csdn.net%2Fdcrmg) 阅读数:59593
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
暗箭伤人 暗箭伤人
1年前
【www.ithunter.club】 20230922下午
不容易的2023年,我们一起努力【www.ithunter.club】(2023092208:00:00.8872062023092216:00:00.887206)1.人事招聘专员数名(可选远程或入职)2.招聘向坐标东京Yahoo、Shift、L
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这