IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

Stella981
• 阅读 993

1、引言

在中大型IM系统中,聊天消息的唯一ID生成策略是个很重要的技术点。不夸张的说,聊天消息ID贯穿了整个聊天生命周期的几乎每一个算法、逻辑和过程,ID生成策略的好坏有可能直接决定系统在某些技术点上的设计难易度。

有中小型IM场景下,消息ID可以简单处理,反正只要唯一就行,而中大型场景下,因为要考虑到分布式的性能、一致性等,所以要考虑的问题点又是另一回事。

总之就是,IM的消息ID生成这件事,可深可浅,看似简单但实际可探索的边界可以很大,这也是为什么我为此专门整理了《IM消息ID技术专题》系列文章的原因。做技术所谓厚积薄发,了解的越多,你的技术可操作空间也就越大,希望随着这个系列文章的阅读,可以为你在ID生成这一块的技术选型带来更多有益的启发。

另外,因为我这边主要关注的是即时通讯方面的系统开发,但并不意味着这个系统文章只适用于IM或消息推送等实时通信系统,它同样适用于其它需要唯一ID的应用中。

本文将要分享的是滴滴开源的分布式ID生成器Tinyid的技术原理、使用方法等等,希望能进一步为你打开这方面的技术视野。

学习交流:

- 开源IM框架源码:https://github.com/JackJiang2011/MobileIMSDK

2、什么是Tinyid?

Tinyid是滴滴用Java开发的一款分布式id生成系统,基于数据库号段算法实现。

Tinyid是在美团的ID生成算法Leaf的基础上扩展而来,支持数据库多主节点模式,它提供了REST API和Java客户端两种获取方式,相对来说使用更方便。不过,和美团的Leaf算法不同的是,Tinyid只支持号段一种模式(并不支持Snowflake模式)。(有关美团的Leaf算法,可以详读《IM消息ID技术专题(四):深度解密美团的分布式ID生成算法》)

Tinyid目前在滴滴客服部门使用,且通过tinyid-client方式接入,每天生成的是亿级别的id。性能上,据称单实例能达到1千万QPS。

它的开源地址是:

PS:滴滴在Tinyid工程页面写了一句话,“tinyid,并不是滴滴官方产品,只是滴滴拥有的代码”,我语文不好,这句该怎么理解呢?

4、Tinyid的主要技术特性

主要特性总结一下就是:

  • 1)全局唯一的long型ID:即id极限数量是2的64次方;
  • 2)趋势递增的id:趋势递增的意思是,id是递增但不一定是连续的(这跟微信的ID生成策略类似);
  • 3)提供 http 和 java-client 方式接入;
  • 4)支持批量获取ID;
  • 5)支持生成1,3,5,7,9…序列的ID;
  • 6)支持多个db的配置。

适用的场景:只关心ID是数字,趋势递增的系统,可以容忍ID不连续,可以容忍ID的浪费。

不适用场景:像类似于订单ID的业务,因生成的ID大部分是连续的,容易被扫库、或者推算出订单量等信息。

另外:微信的聊天消息ID生成算法也是基于号段、趋势递增这种逻辑,如果有兴趣,可以详见:《IM消息ID技术专题(一):微信的海量IM聊天消息序列号生成实践(算法原理篇)》。

5、Tinyid的技术优势

性能方面:

  • 1)http方式:访问性能取决于http server的能力,网络传输速度;
  • 2)java-client方式:id为本地生成,号段长度(step)越长,qps越大,如果将号段设置足够大,则qps可达1000w+。

可用性方面:

  • 1)当db不可用时,因为server有缓存,所以还可以使用一段时间;
  • 2)如果配置了多个db,则只要有1个db存活,则服务可用;
  • 3)使用tiny-client时,只要server有一台存活,则理论上server全挂,因为client有缓存,也可以继续使用一段时间。

6、Tinyid的技术原理详解

6.1 ID生成系统的技术要点

在简单系统中,我们常常使用db的id自增方式来标识和保存数据,随着系统的复杂,数据的增多,分库分表成为了常见的方案,db自增已无法满足要求。

这时候全局唯一的id生成系统就派上了用场,当然这只是id生成其中的一种应用场景。

那么,一个成熟的id生成系统应该具备哪些能力呢?

  • 1)唯一性:无论怎样都不能重复,id全局唯一是最基本的要求;
  • 2)高性能:基础服务尽可能耗时少,如果能够本地生成最好;
  • 3)高可用:虽说很难实现100%的可用性,但是也要无限接近于100%的可用性;
  • 4)易用性:能够拿来即用,接入方便,同时在系统设计和实现上要尽可能的简单。

6.2 Tinyid的实现原理

我们先来看一下最常见的id生成方式,db的auto_increment,相信大家都非常熟悉。

我也见过一些同学在实战中使用这种方案来获取一个id,这个方案的优点是简单,缺点是每次只能向db获取一个id,性能比较差,对db访问比较频繁,db的压力会比较大。

那么,是不是可以对这种方案优化一下呢?可否一次向db获取一批id呢?答案当然是可以的。

一批id,我们可以看成是一个id范围,例如(1000,2000],这个1000到2000也可以称为一个“号段”,我们一次向db申请一个号段,加载到内存中,然后采用自增的方式来生成id,这个号段用完后,再次向db申请一个新的号段,这样对db的压力就减轻了很多,同时内存中直接生成id,性能则提高了很多。

PS:简单解释一下什么是号段模式:

号段模式就是从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存。

那么保存db号段的表该怎设计呢?我们继续往下看。

6.3 DB号段算法描述

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

如上表,我们很容易想到的是db直接存储一个范围(start_id,end_id],当这批id使用完毕后,我们做一次update操作,update start_id=2000(end_id), end_id=3000(end_id+1000),update成功了,则说明获取到了下一个id范围。仔细想想,实际上start_id并没有起什么作用,新的号段总是(end_id,end_id+1000]。

所以这里我们更改一下,db设计应该是这样的:

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

如上表所示:

  • 1)我们增加了biz_type,这个代表业务类型,不同的业务的id隔离;
  • 2)max_id则是上面的end_id了,代表当前最大的可用id;
  • 3)step代表号段的长度,可以根据每个业务的qps来设置一个合理的长度;
  • 4)version是一个乐观锁,每次更新都加上version,能够保证并发更新的正确性 。

那么我们可以通过如下几个步骤来获取一个可用的号段:

A、查询当前的max_id信息:select id, biz_type, max_id, step, version from tiny_id_info where biz_type='test';

B、计算新的max_id: new_max_id = max_id + step;

C、更新DB中的max_id:update tiny_id_info set max_id=#{new_max_id} , verison=version+1 where id=#{id} and max_id=#{max_id} and version=#{version};

D、如果更新成功,则可用号段获取成功,新的可用号段为(max_id, new_max_id];

E、如果更新失败,则号段可能被其他线程获取,回到步骤A,进行重试。

6.4 号段生成方案的简单架构

如上述内容,我们已经完成了号段生成逻辑。

那么我们的id生成服务架构可能是这样的:

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

如上图,id生成系统向外提供http服务,请求经过我们的负载均衡router,到达其中一台tinyid-server,从事先加载好的号段中获取一个id。

如果号段还没有加载,或者已经用完,则向db再申请一个新的可用号段,多台server之间因为号段生成算法的原子性,而保证每台server上的可用号段不重,从而使id生成不重。

可以看到:

  • 1)如果tinyid-server如果重启了,那么号段就作废了,会浪费一部分id;
  • 2)同时id也不会连续;
  • 3)每次请求可能会打到不同的机器上,id也不是单调递增的,而是趋势递增的(不过这对于大部分业务都是可接受的)。

6.5 简单架构的问题

到此一个简单的id生成系统就完成了,那么是否还存在问题呢?

回想一下我们最开始的id生成系统要求:高性能、高可用、简单易用。

在上面这套架构里,至少还存在以下问题:

  • 1)当id用完时需要访问db加载新的号段,db更新也可能存在version冲突,此时id生成耗时明显增加;
  • 2)db是一个单点,虽然db可以建设主从等高可用架构,但始终是一个单点;
  • 3)使用http方式获取一个id,存在网络开销,性能和可用性都不太好。

6.6 优化办法及最终架构

1)双号段缓存:

对于号段用完需要访问db,我们很容易想到在号段用到一定程度的时候,就去异步加载下一个号段,保证内存中始终有可用号段,则可避免性能波动。

2)增加多db支持:

db只有一个master时,如果db不可用(down掉或者主从延迟比较大),则获取号段不可用。实际上我们可以支持多个db,比如2个db,A和B,我们获取号段可以随机从其中一台上获取。那么如果A,B都获取到了同一号段,我们怎么保证生成的id不重呢?tinyid是这么做的,让A只生成偶数id,B只生产奇数id,对应的db设计增加了两个字段,如下所示

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

delta代表id每次的增量,remainder代表余数,例如可以将A,B都delta都设置2,remainder分别设置为0,1则,A的号段只生成偶数号段,B是奇数号段。通过delta和remainder两个字段我们可以根据使用方的需求灵活设计db个数,同时也可以为使用方提供只生产类似奇数的id序列。

3)增加tinyid-client:

使用http获取一个id,存在网络开销,是否可以本地生成id?

为此我们提供了tinyid-client,我们可以向tinyid-server发送请求来获取可用号段,之后在本地构建双号段、id生成,如此id生成则变成纯本地操作,性能大大提升,因为本地有双号段缓存,则可以容忍tinyid-server一段时间的down掉,可用性也有了比较大的提升。

4)tinyid最终架构:

最终我们的架构可能是这样的:

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

下面是更具体的代码调用逻辑:

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

如上图所示,下面是关于这个代码调用逻辑图的说明:

  • 1)nextId和getNextSegmentId是tinyid-server对外提供的两个http接口;
  • 2)nextId是获取下一个id,当调用nextId时,会传入bizType,每个bizType的id数据是隔离的,生成id会使用该bizType类型生成的IdGenerator;
  • 3)getNextSegmentId是获取下一个可用号段,tinyid-client会通过此接口来获取可用号段;
  • 4)IdGenerator是id生成的接口;
  • 5)IdGeneratorFactory是生产具体IdGenerator的工厂,每个biz_type生成一个IdGenerator实例。通过工厂,我们可以随时在db中新增biz_type,而不用重启服务;
  • 6)IdGeneratorFactory实际上有两个子类IdGeneratorFactoryServer和IdGeneratorFactoryClient,区别在于,getNextSegmentId的不同,一个是DbGet,一个是HttpGet;
  • 7)CachedIdGenerator则是具体的id生成器对象,持有currentSegmentId和nextSegmentId对象,负责nextId的核心流程。nextId最终通过AtomicLong.andAndGet(delta)方法产生。

具体的代码实现,有兴趣可以直接阅读源码:

7、Tinyid的最佳实践

1)tinyid-server推荐部署到多个机房的多台机器:

多机房部署可用性更高,http方式访问需使用方考虑延迟问题。

2)推荐使用tinyid-client来获取id,好处如下:

a、id为本地生成(调用AtomicLong.addAndGet方法),性能大大增加;

b、client对server访问变的低频,减轻了server的压力;

c、因为低频,即便client使用方和server不在一个机房,也无须担心延迟;

d、即便所有server挂掉,因为client预加载了号段,依然可以继续使用一段时间

注:使用tinyid-client方式,如果client机器较多频繁重启,可能会浪费较多的id,这时可以考虑使用http方式。

3)推荐db配置两个或更多:

db配置多个时,只要有1个db存活,则服务可用 多db配置,如配置了两个db,则每次新增业务需在两个db中都写入相关数据。

8、Tinyid该怎么调用?

关于怎么调用。鉴于篇幅原因,就不再具体去写了,有兴趣的话,可以读一下这篇《Tinyid:滴滴开源千万级并发的分布式ID生成器》。

9、参考资料

[1] 面试总被问分布式ID怎么办? 滴滴(Tinyid)甩给他

[2] Tinyid:滴滴开源千万级并发的分布式ID生成器

[3] tinyid工程中文readme

[4] 滴滴开源的Tinyid如何每天生成亿级别的ID?

================================================

本文已同步发布于“即时通讯技术圈”公众号,欢迎关注:

IM消息ID技术专题(六):深度解密滴滴的高性能ID生成器(Tinyid)

同步链接是:http://www.52im.net/thread-3129-1-1.html

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
java将前端的json数组字符串转换为列表
记录下在前端通过ajax提交了一个json数组的字符串,在后端如何转换为列表。前端数据转化与请求varcontracts{id:'1',name:'yanggb合同1'},{id:'2',name:'yanggb合同2'},{id:'3',name:'yang
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究
消息丢失排查方法?
遇到丢消息问题,如果是单聊,群聊,聊天室,系统消息可以在开发者后台北极星自助查询一下消息是否发送成功。根据您实际发送的相关信息(发送者、接收者、时间、消息ID……)看是否可以查到消息如果消息查不到一般有几种可能:信息有误(获取token的用户id跟您系统中
融云IM即时通讯 融云IM即时通讯
2个月前
融云IM干货丨IM聊天室中客户端如何确保消息同步的准确性?
客户端确保消息同步的准确性主要依赖于以下几个关键技术和策略:全局唯一的消息ID生成策略:为了保证消息可以通过ID进行识别和排重,IM系统采用全局唯一的消息ID生成策略。这种策略可以确保每条消息都有一个唯一的标识符,从而在消息的发送和接收过程中避免重复。客户