I. 同步机制
线程间的同步机制主要包括三个:
互斥锁:
以排他的方式,防止共享资源被并发访问;
互斥锁为二元变量, 状态为0-开锁、1-上锁;
开锁必须由上锁的线程执行,不受其它线程干扰.条件变量:
满足某个特定条件时,可通过条件变量通知其它线程do-something;
必须与互斥锁*联合使用,单独无法执行.读写锁:
针对多读者,少写者的情况设定
允许多读,但此时不可写;
唯一写,此时不可读.
函数的头文件为:
#include <phtread.h>
1. 互斥锁
操作流程:
I. 创建互斥锁
II. 申请锁:若可用,立刻占用;否则,阻塞等待
III. do-something
IV. 释放锁
V. 销毁锁
以下是互斥锁的基本操作函数:
功能
函数
参数
返回值
说明
初始化锁
int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)
1. mutex: 欲建立的互斥锁
2.attr:属性,一般为NULL
成功:0
失败:非零值
阻塞申请锁
int pthread_mutex_lock(
pthread_mutex_t *mutex)
mutex:互斥锁
成功:0
失败:非零值
若未申请到,
阻塞等待
非阻塞申请
int pthread_mutex_trylock(
pthread_mutex_t *mutex)
mutex:互斥锁
成功:0
失败:非零值
若未申请到,
返回错误
释放锁
int pthread_mutex_unlock(
pthread_mutex_t *mutex)
mutex:互斥锁
成功:0
失败:非零值
销毁锁
int pthread_mutex_destroy(
pthread_mutex_t *mutex)
mutex:互斥锁
成功:0
失败:非零值
2. 条件变量
注意,条件变量必须与互斥锁共同使用;
以下是条件变量的基本操作函数:
功能
函数
参数
返回值
说明
初始化锁
int pthread_cond_init(
pthread_cond_t *cond,
const pthread_condattr_t *attr)
1. cond: 欲建立的条件变量
2.attr:属性,一般为NULL
成功:0
失败:非零值
等待条件变量
int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex)
1.cond:条件变量
2.mutex:互斥锁
成功:0
失败:非零值
阻塞等待
隐含释放申请到的互斥锁
限时等待条件变量
int pthread_cond_timewait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *time)
3.time:等待过期的绝对时间
从1970-1-1:0:0:0起
成功:0
失败:非零值
struct timespec{long ts_sec;
long ts_nsec}
单一通知
int pthread_cond_signal(
pthread_cond_t *cond)
cond:条件变量
成功:0
失败:非零值
唤醒等待cond的第一个线程
隐含获取需要的互斥锁
广播通知
int pthread_cond_broadcast(
pthread_cond_t *cond)
cond:条件变量
成功:0
失败:非零值
唤醒所有等待cond的线程
隐含获取需要的互斥锁
销毁条件变量
int pthread_cond_destroy(
pthread_cond_t *cond)
cond:条件变量
成功:0
失败:非零值
3. 读写锁
读写基本原则:
若当前线程读数据,则允许其他线程读数据,但不允许写
若当前线程写数据,则不允许其他线程读、写数据
以下是基本的操作:
功能
函数
参数
返回值
说明
初始化锁
int pthread_rwlock_init(
pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr)
1. rwlock: 欲建立的读写锁
2.attr:属性,一般为NULL
成功:0
失败:非零值
阻塞申请读锁
int pthread_rwlock_rdlock(
pthread_rwlock_t *rwlock)
rwlock:读写锁
成功:0
失败:非零值
若未申请到,
阻塞等待
非阻塞申请
int pthread_rwlock_tryrdlock(
pthread_rwlock_t *rwlock)
rwlock:读写锁
成功:0
失败:非零值
若未申请到,
返回错误
阻塞申请写锁
int pthread_rwlock_wrlock(
pthread_rwlock_t *rwlock)
rwlock:读写锁
成功:0
失败:非零值
若未申请到,
阻塞等待
非阻塞申请写锁
int pthread_rwlock_trywrlock(
pthread_rwlock_t *rwlock)
rwlock:读写锁
成功:0
失败:非零值
若未申请到,
返回错误
释放锁
int pthread_mutex_unlock(
pthread_rwlock_t *rwlock)
rwlock:读写锁
成功:0
失败:非零值
销毁锁
int pthread_rwlock_destroy(
pthread_rwlock_t *rwlock)
rwlock:读写锁
成功:0
失败:非零值
4. 线程信号量
线程信号量类似进程的信号量,主要是使得多个线程访问共享资源时,顺序互斥访问。
与互斥锁的区别在于:
- 互斥锁:只有一个bool类型的值,只允许2个线程进行排队;
- 信号量:允许多个线程共同等待一个共享资源
函数如下:
#include <semaphore.h>
功能
函数
参数
返回值
说明
创建信号量
int sem_init(sem_t *sem,
int pshared, unsigned int value)
1. sem:信号量地址;
2. pshared:是(!=0)否(0)为共享信号量
3. value:信号量初值
0: 成功
-1: 失败
P操作(阻塞)
int sem_wait(sem_t *sem)
sem:信号量地址
0: 成功
-1: 失败
P操作(非阻塞)
int sem_trywait(sem_t *sem)
sem:信号量地址
0: 成功
-1: 失败
P操作(时间)
int sem_timedwait(sem_t *sem,
const struct timespec *abs_timeout)
1. sem:信号量地址
2. abs_timeout:超时时间
0: 成功
-1: 失败
struct timespec 见下面
V操作
int sem_post(sem_t *sem)
sem:信号量地址
0: 成功
-1: 失败
获取信号量值
int sem_getvalue(sem_t *sem, int *sval)
1. sem:信号量地址
2. sval: 将信号量值放到该地址
0: 成功
-1: 失败
删除信号量
int sem_destroy(sem_t *sem)
sem:信号量地址
0: 成功
-1: 失败
struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds [0 .. 999999999] */ };
II. 异步机制 - 信号
线程的异步机制只有信号
,类似于线程的信号。
线程信号具备以下特点
- 任何线程都可以向其它线程(同一进程下)发送信号;
- 每个线程都具备自己独立的信号屏蔽集,不影响其它线程;
- 线程创建时,不继承原线程的信号屏蔽集;
- 同进程下,所有线程共享对某信号的处理方式,即一个设置,所有有效;
- 多个线程的程序,向某一个线程发送终止信号,则整个进程终止
信号的基本操作如下:
功能
函数
参数
返回值
说明
安装信号
sighandler_t signal(
int signum,
sighandler_t handler)
1.signum:信号值
2.handler:信号操作
详情参见:
http://www.cnblogs.com/Jimmy1988/p/7575103.html
发送信号
int pthread_kill(
pthread_t threadid,
int signo
1.threadid: 目标线程id
2.signo:信号值
成功:0
失败:非零值
若signo=0,
检测该线程是否存在,
不发送信号
设置屏蔽集
pthread_sigmask(int how,
const sigset_t *set,
sigset_t *oldset)
1.how:如何更改信号掩码
2.newmask:新的信号屏蔽集
3.原信号屏蔽集
成功:0
失败:非零值
how值:
1.SIG_BLOCK:添加新掩码
2.SIG_UNBLOCK:删除新掩码
3.SIG_SETMASK:设置新掩码完全替换旧值
也可以参考这篇博客:https://www.cnblogs.com/coding-my-life/p/4782529.html
III、示例代码
1.同步机制:
1). 互斥锁:
两个线程:
- 读线程:从
stdin
中读取数据,并存储- 写线程:从存储buffer中读取数据并显示
#include <stdio.h>
#include <string.h> #include <pthread.h> #include <unistd.h> #include <stdlib.h> #define SIZE 128 pthread_mutex_t mutex; int EXIT = 0; char word[SIZE]; void * child(void *arg) { while(1) { while(strlen(word) == 0) usleep(100); pthread_mutex_lock(&mutex); printf("The input words: %s\n", word); pthread_mutex_unlock(&mutex); if(strcmp("end\n", word) == 0) { printf("The process end\n"); EXIT = 1; break; } memset(word, '\0', SIZE); } return ; } int main() { //1. create the lock pthread_mutex_init(&mutex, NULL); //2.create a new thread pthread_t tid; pthread_create(&tid, NULL, (void *)*child, NULL); //3. Input words while(EXIT == 0) { if(strlen(word)!=0) usleep(100); //add the lock else { pthread_mutex_lock(&mutex); printf("Input words: "); fgets(word, SIZE, stdin); pthread_mutex_unlock(&mutex); } } pthread_join(tid, NULL); printf("The child has joined\n"); pthread_mutex_destroy(&mutex); return 0; }
2). 条件变量:
生产者和消费者问题:
生产者:
向仓库生产数据(大小可任意设定),当满时,阻塞等待仓库有空闲(由消费者消费完后通知)消费者:
从仓库读数据,若仓库为空,则阻塞等待,当生产者再次生产产品后通知
#include <stdio.h>
#include <string.h> #include <stdlib.h> #include <unistd.h> #include <pthread.h> #define SIZE 2 int Data[SIZE]; typedef struct { pthread_mutex_t lock; pthread_cond_t notFull; pthread_cond_t notEmpty; int read_point; int write_point; }sCOND; sCOND *pCondLock; void init(void) { //memset(pCondLock, 0, sizeof(sCOND)); //1.Create a mutex lock pthread_mutex_init(&pCondLock->lock, NULL); //2.Create two condition variable pthread_cond_init(&pCondLock->notFull, NULL); pthread_cond_init(&pCondLock->notEmpty, NULL); //set the read and write point 0 pCondLock->read_point = 0; pCondLock->write_point = 0; } int put(int data) { //obtain the mutex lock pthread_mutex_lock(&pCondLock->lock); //check the global variable Data full or not while((pCondLock->write_point+1)%SIZE == pCondLock->read_point) { printf("The buf is full, waitting for not_full signal\n"); pthread_cond_wait(&pCondLock->notFull, &pCondLock->lock); } //write the data to buffer Data[pCondLock->write_point] = data; pCondLock->write_point++; if(pCondLock->write_point == SIZE) pCondLock->write_point = 0; //unlock the mutex lock pthread_mutex_unlock(&pCondLock->lock); //wake up the not_empty signal pthread_cond_signal(&pCondLock->notEmpty); return 0; } int get(int *data) { //obtain the mutex lock pthread_mutex_lock(&pCondLock->lock); //check the global variable Data empty or not while(pCondLock->write_point == pCondLock->read_point) { printf("The buf is empty, waitting for not_empty signal\n"); pthread_cond_wait(&pCondLock->notEmpty, &pCondLock->lock); } //read the data from buffer *data = Data[pCondLock->read_point]; pCondLock->read_point++; if(pCondLock->read_point == SIZE) pCondLock->read_point = 0; //wake up the not_empty signal pthread_cond_signal(&pCondLock->notFull); pthread_mutex_unlock(&pCondLock->lock); return *data; } void *produce(void) { int times=0; //1. first 5 times, every second write a data to buffer for(times=0; times < 5; times++) { sleep(1); put(times+1); printf("Input date=%d\n", times+1); } //2. last 5 times, every 3 seconds write a data to buffer for(times = 5; times < 10; times++) { sleep(3); put(times+1); printf("Input date=%d\n", times+1); } } void *consume(void) { int times=0; int data=0; //10 times, every 2 seconds read the buffer for(times = 0; times < 10; times++) { sleep(2); data = get(&data); printf("The data is %d\n", data); } } int main() { pthread_t tid1, tid2; pCondLock = malloc(sizeof(sCOND)); memset(pCondLock, '\0', sizeof(sCOND)); //1.init the struct of sCondLock init(); //2. start two threads pthread_create(&tid1, NULL, (void*)*produce, NULL); pthread_create(&tid2, NULL, (void*)*consume, NULL); pthread_join(tid1, NULL); pthread_join(tid2, NULL); free(pCondLock); return 0; }
3). 读写锁:
四个线程:两读两写;
多进程可同时读,但此时不可写;
只有一个线程可写,其它线程等待该线程写完后执行响应的读/写操作
#include <stdio.h>
#include <unistd.h> #include <string.h> #include <pthread.h> #include <stdlib.h> #define BUF_SIZE 128 char buf[BUF_SIZE]; pthread_rwlock_t rwlock; int time_to_exit = 0; void *read_first(void *arg); void *read_second(void *arg); void *write_first(void *arg); void *write_second(void *arg); int main() { pthread_t tid_rd1, tid_rd2; pthread_t tid_wr1, tid_wr2; //1.create a read-write-lock int ret = pthread_rwlock_init(&rwlock, NULL); if(ret != 0) { perror("pthread_rwlock_init"); exit(EXIT_FAILURE); } //2. Create the read and write threads ret = pthread_create(&tid_rd1, NULL, (void *)*read_first, NULL); if(ret != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } ret = pthread_create(&tid_rd2, NULL, (void *)*read_second, NULL); if(ret != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } ret = pthread_create(&tid_wr1, NULL, (void *)*write_first, NULL); if(ret != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } ret = pthread_create(&tid_wr2, NULL, (void *)*write_second, NULL); if(ret != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } //3. wait for the threads finish pthread_join(tid_rd1, NULL); pthread_join(tid_rd2, NULL); pthread_join(tid_wr1, NULL); pthread_join(tid_wr2, NULL); //4. delete the read-write-lock pthread_rwlock_destroy(&rwlock); return 0; } /***************************************************/ // Write threads void *write_first(void *arg) { while(!time_to_exit) { sleep(5); //1. get the read-lock pthread_rwlock_wrlock(&rwlock); printf("\nThis is thread write_first!\n"); printf("Pls input the string: "); fgets(buf, BUF_SIZE, stdin); pthread_rwlock_unlock(&rwlock); } printf("Exit the write_first!\n"); pthread_exit(0); } void *write_second(void *arg) { while(!time_to_exit) { sleep(10); //1. get the read-lock pthread_rwlock_wrlock(&rwlock); printf("\nThis is thread write_second!\n"); printf("Pls input the string: "); fgets(buf, BUF_SIZE, stdin); pthread_rwlock_unlock(&rwlock); } printf("Exit the write_second!\n"); pthread_exit(0); } //-----2. read the threads void *read_first(void *arg) { while(1) { sleep(5); pthread_rwlock_rdlock(&rwlock); printf("\nThis is thread read_first\n"); //if write an string of "end" if(!strncmp("end", buf, 3)) { printf("Exit the read_first!\n"); break; } //if nothing in the BUFFER while(strlen(buf) == 0) { pthread_rwlock_unlock(&rwlock); sleep(2); pthread_rwlock_rdlock(&rwlock); } //output the string in BUFFER printf("The string is: %s\n", buf); pthread_rwlock_unlock(&rwlock); } pthread_rwlock_unlock(&rwlock); //make the exit true time_to_exit = 1; pthread_exit(0); } void *read_second(void *arg) { while(1) { sleep(4); pthread_rwlock_rdlock(&rwlock); printf("\nThis is thread read_second\n"); //if write an string of "end" if(!strncmp("end", buf, 3)) { printf("Exit the read_second!\n"); break; } //if nothing in the BUFFER while(strlen(buf) == 0) { pthread_rwlock_unlock(&rwlock); sleep(2); pthread_rwlock_rdlock(&rwlock); } //output the string in BUFFER printf("The string is: %s\n", buf); pthread_rwlock_unlock(&rwlock); } pthread_rwlock_unlock(&rwlock); //make the exit true time_to_exit = 1; pthread_exit(0); }
2. 异步机制 - 信号:
本程序包括两个线程:
线程1安装SIGUSR1,阻塞除SIGUSR2外的所有信号;
线程2安装SIGUSR2,不阻塞任何信号
操作流程:
1- 线程1、2安装信号;
2- 主线程发送SIGUSR1和SIGUSR2至线程1和线程2;
3- 线程1接收到除SIGUSR2之外的信号,阻塞不执行;当收到SIGUSR2后,执行对应操作;
4- 线程2接收到SIGUSR1和SIGUSR2后,分别执行对应操作
5- 主线程发送SIGKILL信号,结束整个进程
#include <stdio.h>
#include <string.h> #include <unistd.h> #include <pthread.h> #include <signal.h> #include <stdlib.h> void *th_first(void *arg); void *th_second(void *arg); pthread_t tid1, tid2; void handler(int signo) { printf("In handler: tid_%s, signo=%d\n", ((pthread_self() == tid1)?"first":"second"), signo); } int main() { int ret = 0; //1. create first thread ret = pthread_create(&tid1, NULL, (void *)*th_first, NULL); if(0 !=ret) { perror("pthread_create"); exit(EXIT_FAILURE); } //2. create second thread ret = pthread_create(&tid2, NULL, (void *)*th_second, NULL); if(0 !=ret) { perror("pthread_create"); exit(EXIT_FAILURE); } sleep(2); //3. send the signal of SIG_USER1 and SIG_USER2 to thread_first ret = pthread_kill(tid1, SIGUSR1); if(0 !=ret) { perror("pthread_kill"); exit(EXIT_FAILURE); } ret = pthread_kill(tid1, SIGUSR2); if(0 !=ret) { perror("pthread_kill"); exit(EXIT_FAILURE); } //4. send the signal of SIG_USER1 and SIG_USER2 to thread_second_ sleep(1); ret = pthread_kill(tid2, SIGUSR1); if(0 !=ret) { perror("pthread_kill"); exit(EXIT_FAILURE); } ret = pthread_kill(tid2, SIGUSR2); if(0 !=ret) { perror("pthread_kill"); exit(EXIT_FAILURE); } sleep(1); //5. send SIGKILL to all threads ret = pthread_kill(tid1, SIGKILL); if(0 !=ret) { perror("pthread_kill"); exit(EXIT_FAILURE); } pthread_join(tid1, NULL); pthread_join(tid2, NULL); return 0; } void *th_first(void *arg) { //1. Add SIGUSR1 signal signal(SIGUSR1, handler); //2. Set the sinagl set sigset_t set; sigfillset(&set); //init set to be full, include all signal sigdelset(&set, SIGUSR2); //delete the SIGUSR2 from the set variable pthread_sigmask(SIG_SETMASK, &set, NULL); //set the current mask set to be defined set variable //3. Circular wait the signal int i; for(i=0; i<5; i++) { printf("\nThis is th_first, tid=%#x\n ", pthread_self()); pause(); } } void *th_second(void *arg) { usleep(100); //1. Add the signal of SIGUSR2 signal(SIGUSR2, handler); //2. Circular wait the signal int i; for(i=0; i<5; i++) { printf("\nThis is th_second, tid=%#x\n", pthread_self()); pause(); } }