Tensorflow.cifar_数据下载过程(数据输出)

Easter79
• 阅读 824

1、环境:Win7x64、python3.7x64、tensorflow1.14、CPU i5-9400F

2、

3、

 3.1、cifar10,没有数据,全新下载,下到默认目录(C:\Users\Administrator\tensorflow_datasets),全过程 控制台输出:(20190903)

"C:\Program Files\Python37\python.exe" E:/Project_Py37/cifar/cifar10/cifar10_input.py
WARNING: Logging before flag parsing goes to stderr.
W0903 08:30:02.193804  4392 lazy_loader.py:50] 
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
  * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  * https://github.com/tensorflow/addons
  * https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.

Downloading and preparing dataset cifar10 (162.17 MiB) to C:\Users\Administrator\tensorflow_datasets\cifar10\1.0.2...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]

Dl Completed...:   0%|          | 0/1 [00:00<?, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]C:\Program Files\Python37\lib\site-packages\urllib3\connectionpool.py:851: InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings
  InsecureRequestWarning)
Dl Completed...:   0%|          | 0/1 [00:00<?, ? url/s]
Dl Size...:   0%|          | 0/162 [00:00<?, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:12<?, ? url/s]
Dl Size...:   1%|          | 1/162 [00:12<32:54, 12.26s/ MiB]

Extraction completed...: 0 file [00:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:25<?, ? url/s]
Dl Size...:   1%|          | 2/162 [00:25<33:34, 12.59s/ MiB]

Extraction completed...: 0 file [00:25, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:34<?, ? url/s]
Dl Size...:   2%|▏         | 3/162 [00:34<30:25, 11.48s/ MiB]

Extraction completed...: 0 file [00:34, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:42<?, ? url/s]
Dl Size...:   2%|▏         | 4/162 [00:42<27:28, 10.44s/ MiB]

Extraction completed...: 0 file [00:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:48<?, ? url/s]
Dl Size...:   3%|▎         | 5/162 [00:48<23:42,  9.06s/ MiB]

Extraction completed...: 0 file [00:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:55<?, ? url/s]
Dl Size...:   4%|▎         | 6/162 [00:55<22:08,  8.52s/ MiB]

Extraction completed...: 0 file [00:55, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:05<?, ? url/s]
Dl Size...:   4%|▍         | 7/162 [01:05<22:55,  8.87s/ MiB]

Extraction completed...: 0 file [01:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:07<?, ? url/s]
Dl Size...:   5%|▍         | 8/162 [01:07<17:45,  6.92s/ MiB]

Extraction completed...: 0 file [01:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:08<?, ? url/s]
Dl Size...:   6%|▌         | 9/162 [01:08<13:10,  5.17s/ MiB]

Extraction completed...: 0 file [01:08, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:09<?, ? url/s]
Dl Size...:   6%|▌         | 10/162 [01:09<09:49,  3.88s/ MiB]

Extraction completed...: 0 file [01:09, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:11<?, ? url/s]
Dl Size...:   7%|▋         | 11/162 [01:11<08:04,  3.21s/ MiB]

Extraction completed...: 0 file [01:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:12<?, ? url/s]
Dl Size...:   7%|▋         | 12/162 [01:12<06:53,  2.75s/ MiB]

Extraction completed...: 0 file [01:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:14<?, ? url/s]
Dl Size...:   8%|▊         | 13/162 [01:14<05:51,  2.36s/ MiB]

Extraction completed...: 0 file [01:14, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:15<?, ? url/s]
Dl Size...:   9%|▊         | 14/162 [01:15<05:15,  2.13s/ MiB]

Extraction completed...: 0 file [01:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:18<?, ? url/s]
Dl Size...:   9%|▉         | 15/162 [01:18<05:10,  2.11s/ MiB]

Extraction completed...: 0 file [01:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:24<?, ? url/s]
Dl Size...:  10%|▉         | 16/162 [01:24<08:29,  3.49s/ MiB]

Extraction completed...: 0 file [01:24, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:27<?, ? url/s]
Dl Size...:  10%|█         | 17/162 [01:27<07:55,  3.28s/ MiB]

Extraction completed...: 0 file [01:27, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:31<?, ? url/s]
Dl Size...:  11%|█         | 18/162 [01:31<08:40,  3.61s/ MiB]

Extraction completed...: 0 file [01:31, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:40<?, ? url/s]
Dl Size...:  12%|█▏        | 19/162 [01:40<11:49,  4.96s/ MiB]

Extraction completed...: 0 file [01:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:48<?, ? url/s]
Dl Size...:  12%|█▏        | 20/162 [01:48<14:31,  6.14s/ MiB]

Extraction completed...: 0 file [01:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:50<?, ? url/s]
Dl Size...:  13%|█▎        | 21/162 [01:50<11:15,  4.79s/ MiB]

Extraction completed...: 0 file [01:50, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:51<?, ? url/s]
Dl Size...:  14%|█▎        | 22/162 [01:51<08:30,  3.65s/ MiB]

Extraction completed...: 0 file [01:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:52<?, ? url/s]
Dl Size...:  14%|█▍        | 23/162 [01:52<06:31,  2.82s/ MiB]

Extraction completed...: 0 file [01:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:53<?, ? url/s]
Dl Size...:  15%|█▍        | 24/162 [01:53<05:08,  2.24s/ MiB]

Extraction completed...: 0 file [01:53, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:54<?, ? url/s]
Dl Size...:  15%|█▌        | 25/162 [01:54<04:10,  1.83s/ MiB]

Extraction completed...: 0 file [01:54, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:55<?, ? url/s]
Dl Size...:  16%|█▌        | 26/162 [01:55<03:36,  1.59s/ MiB]

Extraction completed...: 0 file [01:55, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:56<?, ? url/s]
Dl Size...:  17%|█▋        | 27/162 [01:56<03:19,  1.48s/ MiB]

Extraction completed...: 0 file [01:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:57<?, ? url/s]
Dl Size...:  17%|█▋        | 28/162 [01:57<02:57,  1.33s/ MiB]

Extraction completed...: 0 file [01:57, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:58<?, ? url/s]
Dl Size...:  18%|█▊        | 29/162 [01:58<02:49,  1.27s/ MiB]

Extraction completed...: 0 file [01:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:00<?, ? url/s]
Dl Size...:  19%|█▊        | 30/162 [02:00<03:07,  1.42s/ MiB]

Extraction completed...: 0 file [02:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:01<?, ? url/s]
Dl Size...:  19%|█▉        | 31/162 [02:01<03:10,  1.46s/ MiB]

Extraction completed...: 0 file [02:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:03<?, ? url/s]
Dl Size...:  20%|█▉        | 32/162 [02:03<03:04,  1.42s/ MiB]

Extraction completed...: 0 file [02:03, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:05<?, ? url/s]
Dl Size...:  20%|██        | 33/162 [02:05<03:41,  1.72s/ MiB]

Extraction completed...: 0 file [02:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:09<?, ? url/s]
Dl Size...:  21%|██        | 34/162 [02:09<04:45,  2.23s/ MiB]

Extraction completed...: 0 file [02:09, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:13<?, ? url/s]
Dl Size...:  22%|██▏       | 35/162 [02:13<06:09,  2.91s/ MiB]

Extraction completed...: 0 file [02:13, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:19<?, ? url/s]
Dl Size...:  22%|██▏       | 36/162 [02:19<07:57,  3.79s/ MiB]

Extraction completed...: 0 file [02:19, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:29<?, ? url/s]
Dl Size...:  23%|██▎       | 37/162 [02:29<11:45,  5.65s/ MiB]

Extraction completed...: 0 file [02:29, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:32<?, ? url/s]
Dl Size...:  23%|██▎       | 38/162 [02:32<10:10,  4.92s/ MiB]

Extraction completed...: 0 file [02:32, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:34<?, ? url/s]
Dl Size...:  24%|██▍       | 39/162 [02:34<08:04,  3.94s/ MiB]

Extraction completed...: 0 file [02:34, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:37<?, ? url/s]
Dl Size...:  25%|██▍       | 40/162 [02:37<07:20,  3.61s/ MiB]

Extraction completed...: 0 file [02:37, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:40<?, ? url/s]
Dl Size...:  25%|██▌       | 41/162 [02:40<07:18,  3.62s/ MiB]

Extraction completed...: 0 file [02:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:44<?, ? url/s]
Dl Size...:  26%|██▌       | 42/162 [02:44<07:06,  3.55s/ MiB]

Extraction completed...: 0 file [02:44, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:49<?, ? url/s]
Dl Size...:  27%|██▋       | 43/162 [02:49<07:55,  4.00s/ MiB]

Extraction completed...: 0 file [02:49, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:52<?, ? url/s]
Dl Size...:  27%|██▋       | 44/162 [02:52<07:11,  3.66s/ MiB]

Extraction completed...: 0 file [02:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:53<?, ? url/s]
Dl Size...:  28%|██▊       | 45/162 [02:53<05:50,  2.99s/ MiB]

Extraction completed...: 0 file [02:53, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:54<?, ? url/s]
Dl Size...:  28%|██▊       | 46/162 [02:54<04:36,  2.38s/ MiB]

Extraction completed...: 0 file [02:54, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:55<?, ? url/s]
Dl Size...:  29%|██▉       | 47/162 [02:55<03:43,  1.94s/ MiB]

Extraction completed...: 0 file [02:55, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:56<?, ? url/s]
Dl Size...:  30%|██▉       | 48/162 [02:56<03:05,  1.63s/ MiB]

Extraction completed...: 0 file [02:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:57<?, ? url/s]
Dl Size...:  30%|███       | 49/162 [02:57<02:38,  1.40s/ MiB]

Extraction completed...: 0 file [02:57, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:58<?, ? url/s]
Dl Size...:  31%|███       | 50/162 [02:58<02:19,  1.25s/ MiB]

Extraction completed...: 0 file [02:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:58<?, ? url/s]
Dl Size...:  31%|███▏      | 51/162 [02:58<02:06,  1.14s/ MiB]

Extraction completed...: 0 file [02:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:00<?, ? url/s]
Dl Size...:  32%|███▏      | 52/162 [03:00<02:08,  1.16s/ MiB]

Extraction completed...: 0 file [03:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:01<?, ? url/s]
Dl Size...:  33%|███▎      | 53/162 [03:01<02:22,  1.31s/ MiB]

Extraction completed...: 0 file [03:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:03<?, ? url/s]
Dl Size...:  33%|███▎      | 54/162 [03:03<02:47,  1.55s/ MiB]

Extraction completed...: 0 file [03:03, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:06<?, ? url/s]
Dl Size...:  34%|███▍      | 55/162 [03:06<03:10,  1.78s/ MiB]

Extraction completed...: 0 file [03:06, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:08<?, ? url/s]
Dl Size...:  35%|███▍      | 56/162 [03:08<03:24,  1.93s/ MiB]

Extraction completed...: 0 file [03:08, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:10<?, ? url/s]
Dl Size...:  35%|███▌      | 57/162 [03:10<03:28,  1.99s/ MiB]

Extraction completed...: 0 file [03:10, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:12<?, ? url/s]
Dl Size...:  36%|███▌      | 58/162 [03:12<03:31,  2.03s/ MiB]

Extraction completed...: 0 file [03:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:15<?, ? url/s]
Dl Size...:  36%|███▋      | 59/162 [03:15<03:42,  2.17s/ MiB]

Extraction completed...: 0 file [03:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:18<?, ? url/s]
Dl Size...:  37%|███▋      | 60/162 [03:18<04:01,  2.37s/ MiB]

Extraction completed...: 0 file [03:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:22<?, ? url/s]
Dl Size...:  38%|███▊      | 61/162 [03:22<04:51,  2.88s/ MiB]

Extraction completed...: 0 file [03:22, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:27<?, ? url/s]
Dl Size...:  38%|███▊      | 62/162 [03:27<05:49,  3.49s/ MiB]

Extraction completed...: 0 file [03:27, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:29<?, ? url/s]
Dl Size...:  39%|███▉      | 63/162 [03:29<05:16,  3.19s/ MiB]

Extraction completed...: 0 file [03:29, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:31<?, ? url/s]
Dl Size...:  40%|███▉      | 64/162 [03:31<04:36,  2.82s/ MiB]

Extraction completed...: 0 file [03:31, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:33<?, ? url/s]
Dl Size...:  40%|████      | 65/162 [03:33<04:05,  2.54s/ MiB]

Extraction completed...: 0 file [03:33, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:35<?, ? url/s]
Dl Size...:  41%|████      | 66/162 [03:35<03:53,  2.44s/ MiB]

Extraction completed...: 0 file [03:35, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:37<?, ? url/s]
Dl Size...:  41%|████▏     | 67/162 [03:37<03:34,  2.26s/ MiB]

Extraction completed...: 0 file [03:37, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:39<?, ? url/s]
Dl Size...:  42%|████▏     | 68/162 [03:39<03:19,  2.12s/ MiB]

Extraction completed...: 0 file [03:39, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:40<?, ? url/s]
Dl Size...:  43%|████▎     | 69/162 [03:40<03:03,  1.98s/ MiB]

Extraction completed...: 0 file [03:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:42<?, ? url/s]
Dl Size...:  43%|████▎     | 70/162 [03:42<02:54,  1.90s/ MiB]

Extraction completed...: 0 file [03:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:44<?, ? url/s]
Dl Size...:  44%|████▍     | 71/162 [03:44<02:40,  1.76s/ MiB]

Extraction completed...: 0 file [03:44, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:45<?, ? url/s]
Dl Size...:  44%|████▍     | 72/162 [03:45<02:34,  1.71s/ MiB]

Extraction completed...: 0 file [03:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:48<?, ? url/s]
Dl Size...:  45%|████▌     | 73/162 [03:48<03:10,  2.14s/ MiB]

Extraction completed...: 0 file [03:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:56<?, ? url/s]
Dl Size...:  46%|████▌     | 74/162 [03:56<05:38,  3.85s/ MiB]

Extraction completed...: 0 file [03:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:00<?, ? url/s]
Dl Size...:  46%|████▋     | 75/162 [04:00<05:32,  3.82s/ MiB]

Extraction completed...: 0 file [04:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:05<?, ? url/s]
Dl Size...:  47%|████▋     | 76/162 [04:05<05:55,  4.13s/ MiB]

Extraction completed...: 0 file [04:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:09<?, ? url/s]
Dl Size...:  48%|████▊     | 77/162 [04:09<05:55,  4.19s/ MiB]

Extraction completed...: 0 file [04:09, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:12<?, ? url/s]
Dl Size...:  48%|████▊     | 78/162 [04:12<05:22,  3.84s/ MiB]

Extraction completed...: 0 file [04:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:14<?, ? url/s]
Dl Size...:  49%|████▉     | 79/162 [04:14<04:25,  3.20s/ MiB]

Extraction completed...: 0 file [04:14, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:15<?, ? url/s]
Dl Size...:  49%|████▉     | 80/162 [04:15<03:28,  2.55s/ MiB]

Extraction completed...: 0 file [04:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:16<?, ? url/s]
Dl Size...:  50%|█████     | 81/162 [04:16<03:05,  2.29s/ MiB]

Extraction completed...: 0 file [04:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:18<?, ? url/s]
Dl Size...:  51%|█████     | 82/162 [04:18<02:39,  2.00s/ MiB]

Extraction completed...: 0 file [04:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:19<?, ? url/s]
Dl Size...:  51%|█████     | 83/162 [04:19<02:23,  1.81s/ MiB]

Extraction completed...: 0 file [04:19, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:21<?, ? url/s]
Dl Size...:  52%|█████▏    | 84/162 [04:21<02:33,  1.96s/ MiB]

Extraction completed...: 0 file [04:21, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:27<?, ? url/s]
Dl Size...:  52%|█████▏    | 85/162 [04:27<03:46,  2.94s/ MiB]

Extraction completed...: 0 file [04:27, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:32<?, ? url/s]
Dl Size...:  53%|█████▎    | 86/162 [04:32<04:38,  3.66s/ MiB]

Extraction completed...: 0 file [04:32, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:36<?, ? url/s]
Dl Size...:  54%|█████▎    | 87/162 [04:36<04:38,  3.71s/ MiB]

Extraction completed...: 0 file [04:36, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:40<?, ? url/s]
Dl Size...:  54%|█████▍    | 88/162 [04:40<04:40,  3.79s/ MiB]

Extraction completed...: 0 file [04:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:45<?, ? url/s]
Dl Size...:  55%|█████▍    | 89/162 [04:45<04:56,  4.06s/ MiB]

Extraction completed...: 0 file [04:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:52<?, ? url/s]
Dl Size...:  56%|█████▌    | 90/162 [04:52<06:06,  5.09s/ MiB]

Extraction completed...: 0 file [04:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [04:58<?, ? url/s]
Dl Size...:  56%|█████▌    | 91/162 [04:58<06:09,  5.21s/ MiB]

Extraction completed...: 0 file [04:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:02<?, ? url/s]
Dl Size...:  57%|█████▋    | 92/162 [05:02<05:46,  4.95s/ MiB]

Extraction completed...: 0 file [05:02, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:07<?, ? url/s]
Dl Size...:  57%|█████▋    | 93/162 [05:07<05:38,  4.91s/ MiB]

Extraction completed...: 0 file [05:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:11<?, ? url/s]
Dl Size...:  58%|█████▊    | 94/162 [05:11<05:30,  4.86s/ MiB]

Extraction completed...: 0 file [05:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:17<?, ? url/s]
Dl Size...:  59%|█████▊    | 95/162 [05:17<05:46,  5.17s/ MiB]

Extraction completed...: 0 file [05:17, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:23<?, ? url/s]
Dl Size...:  59%|█████▉    | 96/162 [05:23<05:50,  5.31s/ MiB]

Extraction completed...: 0 file [05:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:29<?, ? url/s]
Dl Size...:  60%|█████▉    | 97/162 [05:29<06:03,  5.59s/ MiB]

Extraction completed...: 0 file [05:29, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:35<?, ? url/s]
Dl Size...:  60%|██████    | 98/162 [05:35<06:10,  5.78s/ MiB]

Extraction completed...: 0 file [05:35, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:43<?, ? url/s]
Dl Size...:  61%|██████    | 99/162 [05:43<06:46,  6.45s/ MiB]

Extraction completed...: 0 file [05:43, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:48<?, ? url/s]
Dl Size...:  62%|██████▏   | 100/162 [05:48<06:03,  5.86s/ MiB]

Extraction completed...: 0 file [05:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [05:56<?, ? url/s]
Dl Size...:  62%|██████▏   | 101/162 [05:56<06:35,  6.48s/ MiB]

Extraction completed...: 0 file [05:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:02<?, ? url/s]
Dl Size...:  63%|██████▎   | 102/162 [06:02<06:17,  6.29s/ MiB]

Extraction completed...: 0 file [06:02, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:05<?, ? url/s]
Dl Size...:  64%|██████▎   | 103/162 [06:05<05:21,  5.46s/ MiB]

Extraction completed...: 0 file [06:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:10<?, ? url/s]
Dl Size...:  64%|██████▍   | 104/162 [06:10<05:13,  5.40s/ MiB]

Extraction completed...: 0 file [06:10, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:18<?, ? url/s]
Dl Size...:  65%|██████▍   | 105/162 [06:18<05:35,  5.89s/ MiB]

Extraction completed...: 0 file [06:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:25<?, ? url/s]
Dl Size...:  65%|██████▌   | 106/162 [06:25<06:03,  6.48s/ MiB]

Extraction completed...: 0 file [06:25, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:31<?, ? url/s]
Dl Size...:  66%|██████▌   | 107/162 [06:31<05:40,  6.20s/ MiB]

Extraction completed...: 0 file [06:31, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:34<?, ? url/s]
Dl Size...:  67%|██████▋   | 108/162 [06:34<04:50,  5.39s/ MiB]

Extraction completed...: 0 file [06:34, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:38<?, ? url/s]
Dl Size...:  67%|██████▋   | 109/162 [06:38<04:20,  4.92s/ MiB]

Extraction completed...: 0 file [06:38, ? file/s]
Dl Completed...:   0%|          | 0/1 [06:48<?, ? url/s]
Dl Size...:  68%|██████▊   | 110/162 [06:48<05:28,  6.33s/ MiB]

Extraction completed...: 0 file [06:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:04<?, ? url/s]
Dl Size...:  69%|██████▊   | 111/162 [07:04<07:47,  9.17s/ MiB]

Extraction completed...: 0 file [07:04, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:09<?, ? url/s]
Dl Size...:  69%|██████▉   | 112/162 [07:09<06:42,  8.05s/ MiB]

Extraction completed...: 0 file [07:09, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:15<?, ? url/s]
Dl Size...:  70%|██████▉   | 113/162 [07:15<06:10,  7.56s/ MiB]

Extraction completed...: 0 file [07:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:24<?, ? url/s]
Dl Size...:  70%|███████   | 114/162 [07:24<06:19,  7.91s/ MiB]

Extraction completed...: 0 file [07:24, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:28<?, ? url/s]
Dl Size...:  71%|███████   | 115/162 [07:28<05:15,  6.71s/ MiB]

Extraction completed...: 0 file [07:28, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:35<?, ? url/s]
Dl Size...:  72%|███████▏  | 116/162 [07:35<05:05,  6.64s/ MiB]

Extraction completed...: 0 file [07:35, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:39<?, ? url/s]
Dl Size...:  72%|███████▏  | 117/162 [07:39<04:32,  6.05s/ MiB]

Extraction completed...: 0 file [07:39, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:41<?, ? url/s]
Dl Size...:  73%|███████▎  | 118/162 [07:41<03:31,  4.80s/ MiB]

Extraction completed...: 0 file [07:41, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:43<?, ? url/s]
Dl Size...:  73%|███████▎  | 119/162 [07:43<02:52,  4.00s/ MiB]

Extraction completed...: 0 file [07:43, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:45<?, ? url/s]
Dl Size...:  74%|███████▍  | 120/162 [07:45<02:20,  3.33s/ MiB]

Extraction completed...: 0 file [07:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:47<?, ? url/s]
Dl Size...:  75%|███████▍  | 121/162 [07:47<02:00,  2.94s/ MiB]

Extraction completed...: 0 file [07:47, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:49<?, ? url/s]
Dl Size...:  75%|███████▌  | 122/162 [07:49<01:46,  2.66s/ MiB]

Extraction completed...: 0 file [07:49, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:51<?, ? url/s]
Dl Size...:  76%|███████▌  | 123/162 [07:51<01:39,  2.55s/ MiB]

Extraction completed...: 0 file [07:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:54<?, ? url/s]
Dl Size...:  77%|███████▋  | 124/162 [07:54<01:38,  2.58s/ MiB]

Extraction completed...: 0 file [07:54, ? file/s]
Dl Completed...:   0%|          | 0/1 [07:57<?, ? url/s]
Dl Size...:  77%|███████▋  | 125/162 [07:57<01:44,  2.83s/ MiB]

Extraction completed...: 0 file [07:57, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:02<?, ? url/s]
Dl Size...:  78%|███████▊  | 126/162 [08:02<02:02,  3.40s/ MiB]

Extraction completed...: 0 file [08:02, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:07<?, ? url/s]
Dl Size...:  78%|███████▊  | 127/162 [08:07<02:09,  3.71s/ MiB]

Extraction completed...: 0 file [08:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:11<?, ? url/s]
Dl Size...:  79%|███████▉  | 128/162 [08:11<02:14,  3.96s/ MiB]

Extraction completed...: 0 file [08:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:16<?, ? url/s]
Dl Size...:  80%|███████▉  | 129/162 [08:16<02:18,  4.20s/ MiB]

Extraction completed...: 0 file [08:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:21<?, ? url/s]
Dl Size...:  80%|████████  | 130/162 [08:21<02:21,  4.41s/ MiB]

Extraction completed...: 0 file [08:21, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:27<?, ? url/s]
Dl Size...:  81%|████████  | 131/162 [08:27<02:29,  4.82s/ MiB]

Extraction completed...: 0 file [08:27, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:30<?, ? url/s]
Dl Size...:  81%|████████▏ | 132/162 [08:30<02:15,  4.53s/ MiB]

Extraction completed...: 0 file [08:30, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:32<?, ? url/s]
Dl Size...:  82%|████████▏ | 133/162 [08:32<01:47,  3.71s/ MiB]

Extraction completed...: 0 file [08:32, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:34<?, ? url/s]
Dl Size...:  83%|████████▎ | 134/162 [08:34<01:24,  3.01s/ MiB]

Extraction completed...: 0 file [08:34, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:35<?, ? url/s]
Dl Size...:  83%|████████▎ | 135/162 [08:35<01:06,  2.47s/ MiB]

Extraction completed...: 0 file [08:35, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:36<?, ? url/s]
Dl Size...:  84%|████████▍ | 136/162 [08:36<00:53,  2.06s/ MiB]

Extraction completed...: 0 file [08:36, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:37<?, ? url/s]
Dl Size...:  85%|████████▍ | 137/162 [08:37<00:44,  1.78s/ MiB]

Extraction completed...: 0 file [08:37, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:39<?, ? url/s]
Dl Size...:  85%|████████▌ | 138/162 [08:39<00:41,  1.75s/ MiB]

Extraction completed...: 0 file [08:39, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:40<?, ? url/s]
Dl Size...:  86%|████████▌ | 139/162 [08:40<00:39,  1.71s/ MiB]

Extraction completed...: 0 file [08:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:42<?, ? url/s]
Dl Size...:  86%|████████▋ | 140/162 [08:42<00:36,  1.67s/ MiB]

Extraction completed...: 0 file [08:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:43<?, ? url/s]
Dl Size...:  87%|████████▋ | 141/162 [08:43<00:33,  1.61s/ MiB]

Extraction completed...: 0 file [08:43, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:45<?, ? url/s]
Dl Size...:  88%|████████▊ | 142/162 [08:45<00:32,  1.64s/ MiB]

Extraction completed...: 0 file [08:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:47<?, ? url/s]
Dl Size...:  88%|████████▊ | 143/162 [08:47<00:31,  1.67s/ MiB]

Extraction completed...: 0 file [08:47, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:49<?, ? url/s]
Dl Size...:  89%|████████▉ | 144/162 [08:49<00:30,  1.72s/ MiB]

Extraction completed...: 0 file [08:49, ? file/s]
Dl Completed...:   0%|          | 0/1 [08:52<?, ? url/s]
Dl Size...:  90%|████████▉ | 145/162 [08:52<00:35,  2.11s/ MiB]

Extraction completed...: 0 file [08:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:05<?, ? url/s]
Dl Size...:  90%|█████████ | 146/162 [09:05<01:26,  5.40s/ MiB]

Extraction completed...: 0 file [09:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:23<?, ? url/s]
Dl Size...:  91%|█████████ | 147/162 [09:23<02:16,  9.12s/ MiB]

Extraction completed...: 0 file [09:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:33<?, ? url/s]
Dl Size...:  91%|█████████▏| 148/162 [09:33<02:13,  9.55s/ MiB]

Extraction completed...: 0 file [09:33, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:42<?, ? url/s]
Dl Size...:  92%|█████████▏| 149/162 [09:42<02:01,  9.38s/ MiB]

Extraction completed...: 0 file [09:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:46<?, ? url/s]
Dl Size...:  93%|█████████▎| 150/162 [09:46<01:34,  7.86s/ MiB]

Extraction completed...: 0 file [09:46, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:48<?, ? url/s]
Dl Size...:  93%|█████████▎| 151/162 [09:48<01:05,  5.93s/ MiB]

Extraction completed...: 0 file [09:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:49<?, ? url/s]
Dl Size...:  94%|█████████▍| 152/162 [09:49<00:44,  4.42s/ MiB]

Extraction completed...: 0 file [09:49, ? file/s]
Dl Completed...:   0%|          | 0/1 [09:51<?, ? url/s]
Dl Size...:  94%|█████████▍| 153/162 [09:51<00:33,  3.70s/ MiB]

Extraction completed...: 0 file [09:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:00<?, ? url/s]
Dl Size...:  95%|█████████▌| 154/162 [10:00<00:42,  5.35s/ MiB]

Extraction completed...: 0 file [10:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:18<?, ? url/s]
Dl Size...:  96%|█████████▌| 155/162 [10:18<01:03,  9.13s/ MiB]

Extraction completed...: 0 file [10:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:20<?, ? url/s]
Dl Size...:  96%|█████████▋| 156/162 [10:20<00:42,  7.07s/ MiB]

Extraction completed...: 0 file [10:20, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:21<?, ? url/s]
Dl Size...:  97%|█████████▋| 157/162 [10:21<00:26,  5.30s/ MiB]

Extraction completed...: 0 file [10:21, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:23<?, ? url/s]
Dl Size...:  98%|█████████▊| 158/162 [10:23<00:16,  4.08s/ MiB]

Extraction completed...: 0 file [10:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:24<?, ? url/s]
Dl Size...:  98%|█████████▊| 159/162 [10:24<00:09,  3.31s/ MiB]

Extraction completed...: 0 file [10:24, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:26<?, ? url/s]
Dl Size...:  99%|█████████▉| 160/162 [10:26<00:05,  2.85s/ MiB]

Extraction completed...: 0 file [10:26, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:29<?, ? url/s]
Dl Size...:  99%|█████████▉| 161/162 [10:29<00:03,  3.03s/ MiB]

Extraction completed...: 0 file [10:29, ? file/s]
Dl Completed...:   0%|          | 0/1 [10:36<?, ? url/s]
Dl Size...: 100%|██████████| 162/162 [10:36<00:00,  4.17s/ MiB]

Dl Completed...: 100%|██████████| 1/1 [10:37<00:00, 637.85s/ url]
Dl Size...: 100%|██████████| 162/162 [10:37<00:00,  4.17s/ MiB]

Dl Completed...: 100%|██████████| 1/1 [10:37<00:00, 637.85s/ url]
Dl Size...: 100%|██████████| 162/162 [10:37<00:00,  4.17s/ MiB]

Extraction completed...:   0%|          | 0/1 [10:37<?, ? file/s]

Dl Completed...: 100%|██████████| 1/1 [10:40<00:00, 637.85s/ url]
Dl Size...: 100%|██████████| 162/162 [10:40<00:00,  4.17s/ MiB]

Extraction completed...: 100%|██████████| 1/1 [10:40<00:00, 640.60s/ file]
Dl Size...: 100%|██████████| 162/162 [10:40<00:00,  3.95s/ MiB]
Dl Completed...: 100%|██████████| 1/1 [10:40<00:00, 640.60s/ url]



0 examples [00:00, ? examples/s]2019-09-03 08:40:46.206804: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Shuffling...:   0%|          | 0/10 [00:00<?, ? shard/s]W0903 08:41:16.825804  4392 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`

Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  10%|█         | 1/10 [00:00<00:01,  6.54 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  20%|██        | 2/10 [00:00<00:01,  6.99 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  30%|███       | 3/10 [00:00<00:00,  7.20 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  40%|████      | 4/10 [00:00<00:00,  6.94 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  50%|█████     | 5/10 [00:00<00:00,  6.46 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  60%|██████    | 6/10 [00:00<00:00,  6.40 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  70%|███████   | 7/10 [00:01<00:00,  6.42 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  80%|████████  | 8/10 [00:01<00:00,  6.51 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  90%|█████████ | 9/10 [00:01<00:00,  6.54 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:   0%|          | 0/1 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/10000 [00:00<?, ? examples/s]
Writing...:  98%|█████████▊| 9814/10000 [00:00<00:00, 97168.48 examples/s]
W0903 08:41:25.143805  4392 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits.
Dataset cifar10 downloaded and prepared to C:\Users\Administrator\tensorflow_datasets\cifar10\1.0.2. Subsequent calls will reuse this data.
W0903 08:41:25.231804  4392 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:64: The name tf.random_crop is deprecated. Please use tf.image.random_crop instead.

W0903 08:41:25.267804  4392 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow\python\ops\image_ops_impl.py:1514: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
W0903 08:41:25.277804  4392 deprecation.py:323] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:45: DatasetV1.make_one_shot_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.
W0903 08:41:25.292804  4392 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:48: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.


Process finished with exit code 0

  3.1.1、当 "C:\Users\Administrator\tensorflow_datasets"中 已经有了 tfrecord文件之后,再次下载的话,输出 类似如下信息:(只要 版本对 就不需要重新下载了)

Downloading and preparing dataset cifar10 (162.17 MiB) to C:\Users\Administrator\tensorflow_datasets\cifar10\1.0.2...

Dataset cifar10 downloaded and prepared to C:\Users\Administrator\tensorflow_datasets\cifar10\1.0.2. Subsequent calls will reuse this data.

4、

5、代码 输出

 5.1、ZC:代码里面的 注释我去掉了,这样贴的东西可以少一点...

def builder(name, **builder_init_kwargs):
  name, builder_kwargs = _dataset_name_and_kwargs_from_name_str(name)
  builder_kwargs.update(builder_init_kwargs)
  if name in _ABSTRACT_DATASET_REGISTRY:
    raise DatasetNotFoundError(name, is_abstract=True)
  if name in _IN_DEVELOPMENT_REGISTRY:
    raise DatasetNotFoundError(name, in_development=True)
  if name not in _DATASET_REGISTRY:
    raise DatasetNotFoundError(name)
  try:
    return _DATASET_REGISTRY[name](**builder_kwargs)
  except BaseException:
    logging.error("Failed to construct dataset %s", name)
    raise

  其中 打印出 _DATASET_REGISTRY、name、builder_kwargs 的信息,如下:

_DATASET_REGISTRY :  
{
    'dummy_dataset_shared_generator': <class 'tensorflow_datasets.testing.test_utils.DummyDatasetSharedGenerator'>, 
    'dummy_mnist': <class 'tensorflow_datasets.testing.test_utils.DummyMnist'>, 
    'groove': <class 'tensorflow_datasets.audio.groove.Groove'>, 
    'nsynth': <class 'tensorflow_datasets.audio.nsynth.Nsynth'>, 
    'abstract_reasoning': <class 'tensorflow_datasets.image.abstract_reasoning.AbstractReasoning'>, 
    'aflw2k3d': <class 'tensorflow_datasets.image.aflw2k3d.Aflw2k3d'>, 
    'bigearthnet': <class 'tensorflow_datasets.image.bigearthnet.Bigearthnet'>, 
    'mnist': <class 'tensorflow_datasets.image.mnist.MNIST'>, 
    'fashion_mnist': <class 'tensorflow_datasets.image.mnist.FashionMNIST'>, 
    'kmnist': <class 'tensorflow_datasets.image.mnist.KMNIST'>, 
    'emnist': <class 'tensorflow_datasets.image.mnist.EMNIST'>, 
    'binarized_mnist': <class 'tensorflow_datasets.image.binarized_mnist.BinarizedMNIST'>, 
    'binary_alpha_digits': <class 'tensorflow_datasets.image.binary_alpha_digits.BinaryAlphaDigits'>, 
    'caltech101': <class 'tensorflow_datasets.image.caltech.Caltech101'>, 
    'caltech_birds2010': <class 'tensorflow_datasets.image.caltech_birds.CaltechBirds2010'>, 
    'caltech_birds2011': <class 'tensorflow_datasets.image.caltech_birds.CaltechBirds2011'>, 
    'cats_vs_dogs': <class 'tensorflow_datasets.image.cats_vs_dogs.CatsVsDogs'>, 
    'curated_breast_imaging_ddsm': <class 'tensorflow_datasets.image.cbis_ddsm.CuratedBreastImagingDDSM'>, 
    'celeb_a': <class 'tensorflow_datasets.image.celeba.CelebA'>, 
    'celeb_a_hq': <class 'tensorflow_datasets.image.celebahq.CelebAHq'>, 
    'chexpert': <class 'tensorflow_datasets.image.chexpert.Chexpert'>, 
    'cifar10': <class 'tensorflow_datasets.image.cifar.Cifar10'>, 
    'cifar100': <class 'tensorflow_datasets.image.cifar.Cifar100'>, 
    'cifar10_corrupted': <class 'tensorflow_datasets.image.cifar10_corrupted.Cifar10Corrupted'>, 
    'clevr': <class 'tensorflow_datasets.image.clevr.CLEVR'>, 
    'coco': <class 'tensorflow_datasets.image.coco.Coco'>, 
    'coco2014': <class 'tensorflow_datasets.image.coco2014_legacy.Coco2014'>, 
    'coil100': <class 'tensorflow_datasets.image.coil100.Coil100'>, 
    'colorectal_histology': <class 'tensorflow_datasets.image.colorectal_histology.ColorectalHistology'>, 
    'colorectal_histology_large': <class 'tensorflow_datasets.image.colorectal_histology.ColorectalHistologyLarge'>, 
    'cycle_gan': <class 'tensorflow_datasets.image.cycle_gan.CycleGAN'>, 
    'deep_weeds': <class 'tensorflow_datasets.image.deep_weeds.DeepWeeds'>, 
    'diabetic_retinopathy_detection': <class 'tensorflow_datasets.image.diabetic_retinopathy_detection.DiabeticRetinopathyDetection'>, 
    'downsampled_imagenet': <class 'tensorflow_datasets.image.downsampled_imagenet.DownsampledImagenet'>, 
    'dsprites': <class 'tensorflow_datasets.image.dsprites.Dsprites'>, 
    'dtd': <class 'tensorflow_datasets.image.dtd.Dtd'>, 
    'eurosat': <class 'tensorflow_datasets.image.eurosat.Eurosat'>, 
    'tf_flowers': <class 'tensorflow_datasets.image.flowers.TFFlowers'>, 
    'food101': <class 'tensorflow_datasets.image.food101.Food101'>, 
    'horses_or_humans': <class 'tensorflow_datasets.image.horses_or_humans.HorsesOrHumans'>, 
    'image_label_folder': <class 'tensorflow_datasets.image.image_folder.ImageLabelFolder'>, 
    'imagenet2012': <class 'tensorflow_datasets.image.imagenet.Imagenet2012'>, 
    'imagenet2012_corrupted': <class 'tensorflow_datasets.image.imagenet2012_corrupted.Imagenet2012Corrupted'>, 
    'kitti': <class 'tensorflow_datasets.image.kitti.Kitti'>, 
    'lfw': <class 'tensorflow_datasets.image.lfw.LFW'>, 
    'lsun': <class 'tensorflow_datasets.image.lsun.Lsun'>, 
    'mnist_corrupted': <class 'tensorflow_datasets.image.mnist_corrupted.MNISTCorrupted'>, 
    'omniglot': <class 'tensorflow_datasets.image.omniglot.Omniglot'>, 
    'open_images_v4': <class 'tensorflow_datasets.image.open_images.OpenImagesV4'>, 
    'oxford_flowers102': <class 'tensorflow_datasets.image.oxford_flowers102.OxfordFlowers102'>, 
    'oxford_iiit_pet': <class 'tensorflow_datasets.image.oxford_iiit_pet.OxfordIIITPet'>, 
    'patch_camelyon': <class 'tensorflow_datasets.image.patch_camelyon.PatchCamelyon'>, 
    'pet_finder': <class 'tensorflow_datasets.image.pet_finder.PetFinder'>, 
    'quickdraw_bitmap': <class 'tensorflow_datasets.image.quickdraw.QuickdrawBitmap'>, 
    'resisc45': <class 'tensorflow_datasets.image.resisc45.Resisc45'>, 
    'rock_paper_scissors': <class 'tensorflow_datasets.image.rock_paper_scissors.RockPaperScissors'>, 
    'scene_parse150': <class 'tensorflow_datasets.image.scene_parse_150.SceneParse150'>, 
    'shapes3d': <class 'tensorflow_datasets.image.shapes3d.Shapes3d'>, 
    'smallnorb': <class 'tensorflow_datasets.image.smallnorb.Smallnorb'>, 
    'so2sat': <class 'tensorflow_datasets.image.so2sat.So2sat'>, 
    'stanford_dogs': <class 'tensorflow_datasets.image.stanford_dogs.StanfordDogs'>, 
    'stanford_online_products': <class 'tensorflow_datasets.image.stanford_online_products.StanfordOnlineProducts'>, 
    'sun397': <class 'tensorflow_datasets.image.sun.Sun397'>, 
    'svhn_cropped': <class 'tensorflow_datasets.image.svhn.SvhnCropped'>, 
    'uc_merced': <class 'tensorflow_datasets.image.uc_merced.UcMerced'>, 
    'visual_domain_decathlon': <class 'tensorflow_datasets.image.visual_domain_decathlon.VisualDomainDecathlon'>, 
    'voc2007': <class 'tensorflow_datasets.image.voc.Voc2007'>, 
    'amazon_us_reviews': <class 'tensorflow_datasets.structured.amazon_us_reviews.AmazonUSReviews'>, 
    'higgs': <class 'tensorflow_datasets.structured.higgs.Higgs'>, 
    'iris': <class 'tensorflow_datasets.structured.iris.Iris'>, 
    'rock_you': <class 'tensorflow_datasets.structured.rock_you.RockYou'>, 
    'titanic': <class 'tensorflow_datasets.structured.titanic.Titanic'>, 
    'cnn_dailymail': <class 'tensorflow_datasets.text.cnn_dailymail.CnnDailymail'>, 
    'definite_pronoun_resolution': <class 'tensorflow_datasets.text.definite_pronoun_resolution.DefinitePronounResolution'>, 
    'gap': <class 'tensorflow_datasets.text.gap.Gap'>, 
    'glue': <class 'tensorflow_datasets.text.glue.Glue'>, 
    'imdb_reviews': <class 'tensorflow_datasets.text.imdb.IMDBReviews'>, 
    'lm1b': <class 'tensorflow_datasets.text.lm1b.Lm1b'>, 
    'multi_nli': <class 'tensorflow_datasets.text.multi_nli.MultiNLI'>, 
    'snli': <class 'tensorflow_datasets.text.snli.Snli'>, 
    'squad': <class 'tensorflow_datasets.text.squad.Squad'>, 
    'super_glue': <class 'tensorflow_datasets.text.super_glue.SuperGlue'>, 
    'trivia_qa': <class 'tensorflow_datasets.text.trivia_qa.TriviaQA'>, 
    'wikipedia': <class 'tensorflow_datasets.text.wikipedia.Wikipedia'>, 
    'xnli': <class 'tensorflow_datasets.text.xnli.Xnli'>, 
    'flores': <class 'tensorflow_datasets.translate.flores.Flores'>, 
    'para_crawl': <class 'tensorflow_datasets.translate.para_crawl.ParaCrawl'>, 
    'ted_hrlr_translate': <class 'tensorflow_datasets.translate.ted_hrlr.TedHrlrTranslate'>, 
    'ted_multi_translate': <class 'tensorflow_datasets.translate.ted_multi.TedMultiTranslate'>, 
    'wmt_translate': <class 'tensorflow_datasets.translate.wmt.WmtTranslate'>, 
    'wmt14_translate': <class 'tensorflow_datasets.translate.wmt14.Wmt14Translate'>, 
    'wmt15_translate': <class 'tensorflow_datasets.translate.wmt15.Wmt15Translate'>, 
    'wmt16_translate': <class 'tensorflow_datasets.translate.wmt16.Wmt16Translate'>, 
    'wmt17_translate': <class 'tensorflow_datasets.translate.wmt17.Wmt17Translate'>, 
    'wmt18_translate': <class 'tensorflow_datasets.translate.wmt18.Wmt18Translate'>, 
    'wmt19_translate': <class 'tensorflow_datasets.translate.wmt19.Wmt19Translate'>, 
    'wmt_t2t_translate': <class 'tensorflow_datasets.translate.wmt_t2t.WmtT2tTranslate'>, 
    'bair_robot_pushing_small': <class 'tensorflow_datasets.video.bair_robot_pushing.BairRobotPushingSmall'>, 
    'moving_mnist': <class 'tensorflow_datasets.video.moving_mnist.MovingMnist'>, 
    'starcraft_video': <class 'tensorflow_datasets.video.starcraft.StarcraftVideo'>, 
    'ucf101': <class 'tensorflow_datasets.video.ucf101.Ucf101'>}
name :  cifar10
builder_kwargs :  {'data_dir': '~\\tensorflow_datasets'}

6、

 6.1、cifar100,没有数据,全新下载,下到默认目录(C:\Users\Administrator\tensorflow_datasets),全过程 控制台输出:(20190904)

"C:\Program Files\Python37\python.exe" E:/Project_Py37/cifar/cifar10/cifar10_input.py
WARNING: Logging before flag parsing goes to stderr.
W0904 08:07:41.751157  6092 lazy_loader.py:50] 
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
  * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  * https://github.com/tensorflow/addons
  * https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.

W0904 08:07:42.109957  6092 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:117: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

2019-09-04 08:07:42.109957: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
W0904 08:07:42.109957  6092 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:118: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.

Downloading and preparing dataset cifar100 (160.71 MiB) to C:\Users\Administrator\tensorflow_datasets\cifar100\1.3.1...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]

Dl Completed...:   0%|          | 0/1 [00:00<?, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]C:\Program Files\Python37\lib\site-packages\urllib3\connectionpool.py:851: InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings
  InsecureRequestWarning)
Dl Completed...:   0%|          | 0/1 [00:01<?, ? url/s]
Dl Size...:   0%|          | 0/160 [00:01<?, ? MiB/s]

Extraction completed...: 0 file [00:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]
Dl Size...:   1%|          | 1/160 [00:03<08:48,  3.32s/ MiB]

Extraction completed...: 0 file [00:03, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]
Dl Size...:   1%|▏         | 2/160 [00:04<06:55,  2.63s/ MiB]

Extraction completed...: 0 file [00:04, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]
Dl Size...:   2%|▏         | 3/160 [00:05<05:30,  2.10s/ MiB]

Extraction completed...: 0 file [00:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]
Dl Size...:   2%|▎         | 4/160 [00:06<04:35,  1.77s/ MiB]

Extraction completed...: 0 file [00:06, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]
Dl Size...:   3%|▎         | 5/160 [00:07<03:54,  1.51s/ MiB]

Extraction completed...: 0 file [00:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]
Dl Size...:   4%|▍         | 6/160 [00:08<03:27,  1.34s/ MiB]

Extraction completed...: 0 file [00:08, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]
Dl Size...:   4%|▍         | 7/160 [00:08<03:06,  1.22s/ MiB]

Extraction completed...: 0 file [00:08, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:09<?, ? url/s]
Dl Size...:   5%|▌         | 8/160 [00:09<02:51,  1.13s/ MiB]

Extraction completed...: 0 file [00:09, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:10<?, ? url/s]
Dl Size...:   6%|▌         | 9/160 [00:10<02:42,  1.08s/ MiB]

Extraction completed...: 0 file [00:10, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:11<?, ? url/s]
Dl Size...:   6%|▋         | 10/160 [00:11<02:34,  1.03s/ MiB]

Extraction completed...: 0 file [00:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:12<?, ? url/s]
Dl Size...:   7%|▋         | 11/160 [00:12<02:27,  1.01 MiB/s]

Extraction completed...: 0 file [00:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:14<?, ? url/s]
Dl Size...:   8%|▊         | 12/160 [00:14<02:43,  1.11s/ MiB]

Extraction completed...: 0 file [00:14, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:15<?, ? url/s]
Dl Size...:   8%|▊         | 13/160 [00:15<02:43,  1.11s/ MiB]

Extraction completed...: 0 file [00:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:16<?, ? url/s]
Dl Size...:   9%|▉         | 14/160 [00:16<02:36,  1.08s/ MiB]

Extraction completed...: 0 file [00:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:17<?, ? url/s]
Dl Size...:   9%|▉         | 15/160 [00:17<02:37,  1.08s/ MiB]

Extraction completed...: 0 file [00:17, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:18<?, ? url/s]
Dl Size...:  10%|█         | 16/160 [00:18<02:50,  1.18s/ MiB]

Extraction completed...: 0 file [00:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:19<?, ? url/s]
Dl Size...:  11%|█         | 17/160 [00:19<02:53,  1.21s/ MiB]

Extraction completed...: 0 file [00:19, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:21<?, ? url/s]
Dl Size...:  11%|█▏        | 18/160 [00:21<02:48,  1.19s/ MiB]

Extraction completed...: 0 file [00:21, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:22<?, ? url/s]
Dl Size...:  12%|█▏        | 19/160 [00:22<02:45,  1.18s/ MiB]

Extraction completed...: 0 file [00:22, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:23<?, ? url/s]
Dl Size...:  12%|█▎        | 20/160 [00:23<02:47,  1.20s/ MiB]

Extraction completed...: 0 file [00:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:26<?, ? url/s]
Dl Size...:  13%|█▎        | 21/160 [00:26<03:40,  1.59s/ MiB]

Extraction completed...: 0 file [00:26, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:29<?, ? url/s]
Dl Size...:  14%|█▍        | 22/160 [00:29<05:10,  2.25s/ MiB]

Extraction completed...: 0 file [00:29, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:33<?, ? url/s]
Dl Size...:  14%|█▍        | 23/160 [00:33<05:52,  2.58s/ MiB]

Extraction completed...: 0 file [00:33, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:34<?, ? url/s]
Dl Size...:  15%|█▌        | 24/160 [00:34<05:21,  2.36s/ MiB]

Extraction completed...: 0 file [00:34, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:36<?, ? url/s]
Dl Size...:  16%|█▌        | 25/160 [00:36<04:32,  2.02s/ MiB]

Extraction completed...: 0 file [00:36, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:37<?, ? url/s]
Dl Size...:  16%|█▋        | 26/160 [00:37<03:43,  1.67s/ MiB]

Extraction completed...: 0 file [00:37, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:37<?, ? url/s]
Dl Size...:  17%|█▋        | 27/160 [00:37<03:09,  1.43s/ MiB]

Extraction completed...: 0 file [00:37, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:38<?, ? url/s]
Dl Size...:  18%|█▊        | 28/160 [00:38<02:48,  1.28s/ MiB]

Extraction completed...: 0 file [00:38, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:39<?, ? url/s]
Dl Size...:  18%|█▊        | 29/160 [00:39<02:32,  1.16s/ MiB]

Extraction completed...: 0 file [00:39, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:40<?, ? url/s]
Dl Size...:  19%|█▉        | 30/160 [00:40<02:22,  1.09s/ MiB]

Extraction completed...: 0 file [00:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:41<?, ? url/s]
Dl Size...:  19%|█▉        | 31/160 [00:41<02:15,  1.05s/ MiB]

Extraction completed...: 0 file [00:41, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:42<?, ? url/s]
Dl Size...:  20%|██        | 32/160 [00:42<02:23,  1.12s/ MiB]

Extraction completed...: 0 file [00:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:44<?, ? url/s]
Dl Size...:  21%|██        | 33/160 [00:44<02:28,  1.17s/ MiB]

Extraction completed...: 0 file [00:44, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:45<?, ? url/s]
Dl Size...:  21%|██▏       | 34/160 [00:45<02:22,  1.13s/ MiB]

Extraction completed...: 0 file [00:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:46<?, ? url/s]
Dl Size...:  22%|██▏       | 35/160 [00:46<02:15,  1.08s/ MiB]

Extraction completed...: 0 file [00:46, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:47<?, ? url/s]
Dl Size...:  22%|██▎       | 36/160 [00:47<02:09,  1.04s/ MiB]

Extraction completed...: 0 file [00:47, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:48<?, ? url/s]
Dl Size...:  23%|██▎       | 37/160 [00:48<02:09,  1.05s/ MiB]

Extraction completed...: 0 file [00:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:49<?, ? url/s]
Dl Size...:  24%|██▍       | 38/160 [00:49<02:03,  1.01s/ MiB]

Extraction completed...: 0 file [00:49, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:50<?, ? url/s]
Dl Size...:  24%|██▍       | 39/160 [00:50<01:59,  1.01 MiB/s]

Extraction completed...: 0 file [00:50, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:51<?, ? url/s]
Dl Size...:  25%|██▌       | 40/160 [00:51<01:56,  1.03 MiB/s]

Extraction completed...: 0 file [00:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:51<?, ? url/s]
Dl Size...:  26%|██▌       | 41/160 [00:51<01:54,  1.04 MiB/s]

Extraction completed...: 0 file [00:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:52<?, ? url/s]
Dl Size...:  26%|██▋       | 42/160 [00:52<01:52,  1.05 MiB/s]

Extraction completed...: 0 file [00:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:54<?, ? url/s]
Dl Size...:  27%|██▋       | 43/160 [00:54<01:57,  1.00s/ MiB]

Extraction completed...: 0 file [00:54, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:55<?, ? url/s]
Dl Size...:  28%|██▊       | 44/160 [00:55<02:07,  1.10s/ MiB]

Extraction completed...: 0 file [00:55, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:56<?, ? url/s]
Dl Size...:  28%|██▊       | 45/160 [00:56<02:05,  1.09s/ MiB]

Extraction completed...: 0 file [00:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:57<?, ? url/s]
Dl Size...:  29%|██▉       | 46/160 [00:57<02:00,  1.05s/ MiB]

Extraction completed...: 0 file [00:57, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:58<?, ? url/s]
Dl Size...:  29%|██▉       | 47/160 [00:58<01:58,  1.05s/ MiB]

Extraction completed...: 0 file [00:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [00:59<?, ? url/s]
Dl Size...:  30%|███       | 48/160 [00:59<01:57,  1.05s/ MiB]

Extraction completed...: 0 file [00:59, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:00<?, ? url/s]
Dl Size...:  31%|███       | 49/160 [01:00<01:52,  1.02s/ MiB]

Extraction completed...: 0 file [01:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:01<?, ? url/s]
Dl Size...:  31%|███▏      | 50/160 [01:01<02:07,  1.16s/ MiB]

Extraction completed...: 0 file [01:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:03<?, ? url/s]
Dl Size...:  32%|███▏      | 51/160 [01:03<02:31,  1.39s/ MiB]

Extraction completed...: 0 file [01:03, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:05<?, ? url/s]
Dl Size...:  32%|███▎      | 52/160 [01:05<02:52,  1.60s/ MiB]

Extraction completed...: 0 file [01:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:07<?, ? url/s]
Dl Size...:  33%|███▎      | 53/160 [01:07<03:06,  1.74s/ MiB]

Extraction completed...: 0 file [01:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:10<?, ? url/s]
Dl Size...:  34%|███▍      | 54/160 [01:10<03:13,  1.83s/ MiB]

Extraction completed...: 0 file [01:10, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:11<?, ? url/s]
Dl Size...:  34%|███▍      | 55/160 [01:11<03:04,  1.76s/ MiB]

Extraction completed...: 0 file [01:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:12<?, ? url/s]
Dl Size...:  35%|███▌      | 56/160 [01:12<02:48,  1.62s/ MiB]

Extraction completed...: 0 file [01:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:13<?, ? url/s]
Dl Size...:  36%|███▌      | 57/160 [01:13<02:26,  1.42s/ MiB]

Extraction completed...: 0 file [01:13, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:14<?, ? url/s]
Dl Size...:  36%|███▋      | 58/160 [01:14<02:09,  1.27s/ MiB]

Extraction completed...: 0 file [01:14, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:15<?, ? url/s]
Dl Size...:  37%|███▋      | 59/160 [01:15<01:57,  1.16s/ MiB]

Extraction completed...: 0 file [01:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:16<?, ? url/s]
Dl Size...:  38%|███▊      | 60/160 [01:16<01:49,  1.09s/ MiB]

Extraction completed...: 0 file [01:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:17<?, ? url/s]
Dl Size...:  38%|███▊      | 61/160 [01:17<01:42,  1.04s/ MiB]

Extraction completed...: 0 file [01:17, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:18<?, ? url/s]
Dl Size...:  39%|███▉      | 62/160 [01:18<01:38,  1.00s/ MiB]

Extraction completed...: 0 file [01:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:19<?, ? url/s]
Dl Size...:  39%|███▉      | 63/160 [01:19<01:33,  1.04 MiB/s]

Extraction completed...: 0 file [01:19, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:20<?, ? url/s]
Dl Size...:  40%|████      | 64/160 [01:20<01:31,  1.05 MiB/s]

Extraction completed...: 0 file [01:20, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:21<?, ? url/s]
Dl Size...:  41%|████      | 65/160 [01:21<01:43,  1.09s/ MiB]

Extraction completed...: 0 file [01:21, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:23<?, ? url/s]
Dl Size...:  41%|████▏     | 66/160 [01:23<01:54,  1.22s/ MiB]

Extraction completed...: 0 file [01:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:25<?, ? url/s]
Dl Size...:  42%|████▏     | 67/160 [01:25<02:14,  1.44s/ MiB]

Extraction completed...: 0 file [01:25, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:27<?, ? url/s]
Dl Size...:  42%|████▎     | 68/160 [01:27<02:44,  1.79s/ MiB]

Extraction completed...: 0 file [01:27, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:29<?, ? url/s]
Dl Size...:  43%|████▎     | 69/160 [01:29<02:32,  1.67s/ MiB]

Extraction completed...: 0 file [01:29, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:30<?, ? url/s]
Dl Size...:  44%|████▍     | 70/160 [01:30<02:15,  1.51s/ MiB]

Extraction completed...: 0 file [01:30, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:31<?, ? url/s]
Dl Size...:  44%|████▍     | 71/160 [01:31<01:58,  1.33s/ MiB]

Extraction completed...: 0 file [01:31, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:32<?, ? url/s]
Dl Size...:  45%|████▌     | 72/160 [01:32<01:46,  1.21s/ MiB]

Extraction completed...: 0 file [01:32, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:33<?, ? url/s]
Dl Size...:  46%|████▌     | 73/160 [01:33<01:37,  1.12s/ MiB]

Extraction completed...: 0 file [01:33, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:33<?, ? url/s]
Dl Size...:  46%|████▋     | 74/160 [01:33<01:30,  1.06s/ MiB]

Extraction completed...: 0 file [01:33, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:34<?, ? url/s]
Dl Size...:  47%|████▋     | 75/160 [01:34<01:26,  1.02s/ MiB]

Extraction completed...: 0 file [01:34, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:35<?, ? url/s]
Dl Size...:  48%|████▊     | 76/160 [01:35<01:22,  1.01 MiB/s]

Extraction completed...: 0 file [01:35, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:36<?, ? url/s]
Dl Size...:  48%|████▊     | 77/160 [01:36<01:19,  1.04 MiB/s]

Extraction completed...: 0 file [01:36, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:37<?, ? url/s]
Dl Size...:  49%|████▉     | 78/160 [01:37<01:17,  1.06 MiB/s]

Extraction completed...: 0 file [01:37, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:38<?, ? url/s]
Dl Size...:  49%|████▉     | 79/160 [01:38<01:15,  1.07 MiB/s]

Extraction completed...: 0 file [01:38, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:39<?, ? url/s]
Dl Size...:  50%|█████     | 80/160 [01:39<01:14,  1.07 MiB/s]

Extraction completed...: 0 file [01:39, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:40<?, ? url/s]
Dl Size...:  51%|█████     | 81/160 [01:40<01:12,  1.08 MiB/s]

Extraction completed...: 0 file [01:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:41<?, ? url/s]
Dl Size...:  51%|█████▏    | 82/160 [01:41<01:12,  1.08 MiB/s]

Extraction completed...: 0 file [01:41, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:42<?, ? url/s]
Dl Size...:  52%|█████▏    | 83/160 [01:42<01:16,  1.00 MiB/s]

Extraction completed...: 0 file [01:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:43<?, ? url/s]
Dl Size...:  52%|█████▎    | 84/160 [01:43<01:19,  1.04s/ MiB]

Extraction completed...: 0 file [01:43, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:44<?, ? url/s]
Dl Size...:  53%|█████▎    | 85/160 [01:44<01:17,  1.04s/ MiB]

Extraction completed...: 0 file [01:44, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:45<?, ? url/s]
Dl Size...:  54%|█████▍    | 86/160 [01:45<01:14,  1.00s/ MiB]

Extraction completed...: 0 file [01:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:46<?, ? url/s]
Dl Size...:  54%|█████▍    | 87/160 [01:46<01:11,  1.03 MiB/s]

Extraction completed...: 0 file [01:46, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:47<?, ? url/s]
Dl Size...:  55%|█████▌    | 88/160 [01:47<01:08,  1.05 MiB/s]

Extraction completed...: 0 file [01:47, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:48<?, ? url/s]
Dl Size...:  56%|█████▌    | 89/160 [01:48<01:06,  1.06 MiB/s]

Extraction completed...: 0 file [01:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:49<?, ? url/s]
Dl Size...:  56%|█████▋    | 90/160 [01:49<01:12,  1.03s/ MiB]

Extraction completed...: 0 file [01:49, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:50<?, ? url/s]
Dl Size...:  57%|█████▋    | 91/160 [01:50<01:13,  1.06s/ MiB]

Extraction completed...: 0 file [01:50, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:51<?, ? url/s]
Dl Size...:  57%|█████▊    | 92/160 [01:51<01:12,  1.06s/ MiB]

Extraction completed...: 0 file [01:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:52<?, ? url/s]
Dl Size...:  58%|█████▊    | 93/160 [01:52<01:11,  1.06s/ MiB]

Extraction completed...: 0 file [01:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:53<?, ? url/s]
Dl Size...:  59%|█████▉    | 94/160 [01:53<01:10,  1.07s/ MiB]

Extraction completed...: 0 file [01:53, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:54<?, ? url/s]
Dl Size...:  59%|█████▉    | 95/160 [01:54<01:09,  1.07s/ MiB]

Extraction completed...: 0 file [01:54, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:55<?, ? url/s]
Dl Size...:  60%|██████    | 96/160 [01:55<01:07,  1.06s/ MiB]

Extraction completed...: 0 file [01:55, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:56<?, ? url/s]
Dl Size...:  61%|██████    | 97/160 [01:56<01:05,  1.04s/ MiB]

Extraction completed...: 0 file [01:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:57<?, ? url/s]
Dl Size...:  61%|██████▏   | 98/160 [01:57<01:04,  1.05s/ MiB]

Extraction completed...: 0 file [01:57, ? file/s]
Dl Completed...:   0%|          | 0/1 [01:59<?, ? url/s]
Dl Size...:  62%|██████▏   | 99/160 [01:59<01:05,  1.08s/ MiB]

Extraction completed...: 0 file [01:59, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:00<?, ? url/s]
Dl Size...:  62%|██████▎   | 100/160 [02:00<01:04,  1.07s/ MiB]

Extraction completed...: 0 file [02:00, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:01<?, ? url/s]
Dl Size...:  63%|██████▎   | 101/160 [02:01<01:01,  1.04s/ MiB]

Extraction completed...: 0 file [02:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:02<?, ? url/s]
Dl Size...:  64%|██████▍   | 102/160 [02:02<00:57,  1.00 MiB/s]

Extraction completed...: 0 file [02:02, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:02<?, ? url/s]
Dl Size...:  64%|██████▍   | 103/160 [02:02<00:55,  1.03 MiB/s]

Extraction completed...: 0 file [02:02, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:03<?, ? url/s]
Dl Size...:  65%|██████▌   | 104/160 [02:03<00:53,  1.05 MiB/s]

Extraction completed...: 0 file [02:03, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:04<?, ? url/s]
Dl Size...:  66%|██████▌   | 105/160 [02:04<00:51,  1.06 MiB/s]

Extraction completed...: 0 file [02:04, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:05<?, ? url/s]
Dl Size...:  66%|██████▋   | 106/160 [02:05<00:50,  1.07 MiB/s]

Extraction completed...: 0 file [02:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:07<?, ? url/s]
Dl Size...:  67%|██████▋   | 107/160 [02:07<01:01,  1.16s/ MiB]

Extraction completed...: 0 file [02:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:08<?, ? url/s]
Dl Size...:  68%|██████▊   | 108/160 [02:08<01:03,  1.23s/ MiB]

Extraction completed...: 0 file [02:08, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:10<?, ? url/s]
Dl Size...:  68%|██████▊   | 109/160 [02:10<01:04,  1.27s/ MiB]

Extraction completed...: 0 file [02:10, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:11<?, ? url/s]
Dl Size...:  69%|██████▉   | 110/160 [02:11<01:04,  1.30s/ MiB]

Extraction completed...: 0 file [02:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:12<?, ? url/s]
Dl Size...:  69%|██████▉   | 111/160 [02:12<01:04,  1.32s/ MiB]

Extraction completed...: 0 file [02:12, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:14<?, ? url/s]
Dl Size...:  70%|███████   | 112/160 [02:14<01:03,  1.32s/ MiB]

Extraction completed...: 0 file [02:14, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:15<?, ? url/s]
Dl Size...:  71%|███████   | 113/160 [02:15<01:00,  1.28s/ MiB]

Extraction completed...: 0 file [02:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:16<?, ? url/s]
Dl Size...:  71%|███████▏  | 114/160 [02:16<00:55,  1.20s/ MiB]

Extraction completed...: 0 file [02:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:17<?, ? url/s]
Dl Size...:  72%|███████▏  | 115/160 [02:17<00:52,  1.16s/ MiB]

Extraction completed...: 0 file [02:17, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:18<?, ? url/s]
Dl Size...:  72%|███████▎  | 116/160 [02:18<00:49,  1.12s/ MiB]

Extraction completed...: 0 file [02:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:19<?, ? url/s]
Dl Size...:  73%|███████▎  | 117/160 [02:19<00:45,  1.06s/ MiB]

Extraction completed...: 0 file [02:19, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:20<?, ? url/s]
Dl Size...:  74%|███████▍  | 118/160 [02:20<00:42,  1.02s/ MiB]

Extraction completed...: 0 file [02:20, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:21<?, ? url/s]
Dl Size...:  74%|███████▍  | 119/160 [02:21<00:41,  1.00s/ MiB]

Extraction completed...: 0 file [02:21, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:22<?, ? url/s]
Dl Size...:  75%|███████▌  | 120/160 [02:22<00:39,  1.03 MiB/s]

Extraction completed...: 0 file [02:22, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:23<?, ? url/s]
Dl Size...:  76%|███████▌  | 121/160 [02:23<00:36,  1.06 MiB/s]

Extraction completed...: 0 file [02:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:23<?, ? url/s]
Dl Size...:  76%|███████▋  | 122/160 [02:23<00:35,  1.08 MiB/s]

Extraction completed...: 0 file [02:23, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:24<?, ? url/s]
Dl Size...:  77%|███████▋  | 123/160 [02:24<00:34,  1.07 MiB/s]

Extraction completed...: 0 file [02:24, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:27<?, ? url/s]
Dl Size...:  78%|███████▊  | 124/160 [02:27<00:48,  1.36s/ MiB]

Extraction completed...: 0 file [02:27, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:32<?, ? url/s]
Dl Size...:  78%|███████▊  | 125/160 [02:32<01:24,  2.41s/ MiB]

Extraction completed...: 0 file [02:32, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:36<?, ? url/s]
Dl Size...:  79%|███████▉  | 126/160 [02:36<01:46,  3.14s/ MiB]

Extraction completed...: 0 file [02:36, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:40<?, ? url/s]
Dl Size...:  79%|███████▉  | 127/160 [02:40<01:46,  3.22s/ MiB]

Extraction completed...: 0 file [02:40, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:42<?, ? url/s]
Dl Size...:  80%|████████  | 128/160 [02:42<01:29,  2.80s/ MiB]

Extraction completed...: 0 file [02:42, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:43<?, ? url/s]
Dl Size...:  81%|████████  | 129/160 [02:43<01:15,  2.45s/ MiB]

Extraction completed...: 0 file [02:43, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:45<?, ? url/s]
Dl Size...:  81%|████████▏ | 130/160 [02:45<01:05,  2.18s/ MiB]

Extraction completed...: 0 file [02:45, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:46<?, ? url/s]
Dl Size...:  82%|████████▏ | 131/160 [02:46<00:56,  1.94s/ MiB]

Extraction completed...: 0 file [02:46, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:48<?, ? url/s]
Dl Size...:  82%|████████▎ | 132/160 [02:48<00:52,  1.87s/ MiB]

Extraction completed...: 0 file [02:48, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:50<?, ? url/s]
Dl Size...:  83%|████████▎ | 133/160 [02:50<00:47,  1.77s/ MiB]

Extraction completed...: 0 file [02:50, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:51<?, ? url/s]
Dl Size...:  84%|████████▍ | 134/160 [02:51<00:42,  1.64s/ MiB]

Extraction completed...: 0 file [02:51, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:52<?, ? url/s]
Dl Size...:  84%|████████▍ | 135/160 [02:52<00:38,  1.54s/ MiB]

Extraction completed...: 0 file [02:52, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:54<?, ? url/s]
Dl Size...:  85%|████████▌ | 136/160 [02:54<00:35,  1.48s/ MiB]

Extraction completed...: 0 file [02:54, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:55<?, ? url/s]
Dl Size...:  86%|████████▌ | 137/160 [02:55<00:32,  1.40s/ MiB]

Extraction completed...: 0 file [02:55, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:56<?, ? url/s]
Dl Size...:  86%|████████▋ | 138/160 [02:56<00:28,  1.30s/ MiB]

Extraction completed...: 0 file [02:56, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:57<?, ? url/s]
Dl Size...:  87%|████████▋ | 139/160 [02:57<00:24,  1.19s/ MiB]

Extraction completed...: 0 file [02:57, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:58<?, ? url/s]
Dl Size...:  88%|████████▊ | 140/160 [02:58<00:21,  1.09s/ MiB]

Extraction completed...: 0 file [02:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:58<?, ? url/s]
Dl Size...:  88%|████████▊ | 141/160 [02:58<00:19,  1.02s/ MiB]

Extraction completed...: 0 file [02:58, ? file/s]
Dl Completed...:   0%|          | 0/1 [02:59<?, ? url/s]
Dl Size...:  89%|████████▉ | 142/160 [02:59<00:17,  1.02 MiB/s]

Extraction completed...: 0 file [02:59, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:01<?, ? url/s]
Dl Size...:  89%|████████▉ | 143/160 [03:01<00:17,  1.04s/ MiB]

Extraction completed...: 0 file [03:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:01<?, ? url/s]
Dl Size...:  90%|█████████ | 144/160 [03:01<00:15,  1.00 MiB/s]

Extraction completed...: 0 file [03:01, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:02<?, ? url/s]
Dl Size...:  91%|█████████ | 145/160 [03:02<00:15,  1.01s/ MiB]

Extraction completed...: 0 file [03:02, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:03<?, ? url/s]
Dl Size...:  91%|█████████▏| 146/160 [03:03<00:13,  1.04 MiB/s]

Extraction completed...: 0 file [03:03, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:04<?, ? url/s]
Dl Size...:  92%|█████████▏| 147/160 [03:04<00:12,  1.06 MiB/s]

Extraction completed...: 0 file [03:04, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:05<?, ? url/s]
Dl Size...:  92%|█████████▎| 148/160 [03:05<00:11,  1.07 MiB/s]

Extraction completed...: 0 file [03:05, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:06<?, ? url/s]
Dl Size...:  93%|█████████▎| 149/160 [03:06<00:10,  1.08 MiB/s]

Extraction completed...: 0 file [03:06, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:07<?, ? url/s]
Dl Size...:  94%|█████████▍| 150/160 [03:07<00:09,  1.09 MiB/s]

Extraction completed...: 0 file [03:07, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:08<?, ? url/s]
Dl Size...:  94%|█████████▍| 151/160 [03:08<00:08,  1.08 MiB/s]

Extraction completed...: 0 file [03:08, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:09<?, ? url/s]
Dl Size...:  95%|█████████▌| 152/160 [03:09<00:07,  1.09 MiB/s]

Extraction completed...: 0 file [03:09, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:10<?, ? url/s]
Dl Size...:  96%|█████████▌| 153/160 [03:10<00:06,  1.04 MiB/s]

Extraction completed...: 0 file [03:10, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:11<?, ? url/s]
Dl Size...:  96%|█████████▋| 154/160 [03:11<00:06,  1.15s/ MiB]

Extraction completed...: 0 file [03:11, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:13<?, ? url/s]
Dl Size...:  97%|█████████▋| 155/160 [03:13<00:06,  1.28s/ MiB]

Extraction completed...: 0 file [03:13, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:15<?, ? url/s]
Dl Size...:  98%|█████████▊| 156/160 [03:15<00:05,  1.39s/ MiB]

Extraction completed...: 0 file [03:15, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:16<?, ? url/s]
Dl Size...:  98%|█████████▊| 157/160 [03:16<00:04,  1.38s/ MiB]

Extraction completed...: 0 file [03:16, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:18<?, ? url/s]
Dl Size...:  99%|█████████▉| 158/160 [03:18<00:02,  1.45s/ MiB]

Extraction completed...: 0 file [03:18, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:19<?, ? url/s]
Dl Size...:  99%|█████████▉| 159/160 [03:19<00:01,  1.50s/ MiB]

Extraction completed...: 0 file [03:19, ? file/s]
Dl Completed...:   0%|          | 0/1 [03:21<?, ? url/s]
Dl Size...: 100%|██████████| 160/160 [03:21<00:00,  1.57s/ MiB]

Dl Completed...: 100%|██████████| 1/1 [03:22<00:00, 202.53s/ url]
Dl Size...: 100%|██████████| 160/160 [03:22<00:00,  1.57s/ MiB]

Dl Completed...: 100%|██████████| 1/1 [03:22<00:00, 202.53s/ url]
Dl Size...: 100%|██████████| 160/160 [03:22<00:00,  1.57s/ MiB]

Extraction completed...:   0%|          | 0/1 [03:22<?, ? file/s]




Dl Completed...: 100%|██████████| 1/1 [03:24<00:00, 202.53s/ url]
Dl Size...: 100%|██████████| 160/160 [03:24<00:00,  1.57s/ MiB]

Extraction completed...: 100%|██████████| 1/1 [03:24<00:00, 204.88s/ file]
Dl Size...: 100%|██████████| 160/160 [03:24<00:00,  1.28s/ MiB]
Dl Completed...: 100%|██████████| 1/1 [03:24<00:00, 204.88s/ url]
Shuffling...:   0%|          | 0/10 [00:00<?, ? shard/s]W0904 08:11:40.826758  6092 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`

Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  10%|█         | 1/10 [00:00<00:02,  3.77 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  20%|██        | 2/10 [00:00<00:02,  3.77 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  30%|███       | 3/10 [00:00<00:01,  3.52 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  40%|████      | 4/10 [00:01<00:01,  3.37 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  50%|█████     | 5/10 [00:01<00:01,  3.86 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  60%|██████    | 6/10 [00:01<00:00,  4.13 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  70%|███████   | 7/10 [00:01<00:00,  4.25 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  80%|████████  | 8/10 [00:01<00:00,  4.34 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:  90%|█████████ | 9/10 [00:02<00:00,  4.70 shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/5000 [00:00<?, ? examples/s]
Shuffling...:   0%|          | 0/1 [00:00<?, ? shard/s]
Reading...: 0 examples [00:00, ? examples/s]
                                            
Writing...:   0%|          | 0/10000 [00:00<?, ? examples/s]
W0904 08:11:49.859158  6092 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits.
Dataset cifar100 downloaded and prepared to C:\Users\Administrator\tensorflow_datasets\cifar100\1.3.1. Subsequent calls will reuse this data.
W0904 08:11:49.952758  6092 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:65: The name tf.random_crop is deprecated. Please use tf.image.random_crop instead.

W0904 08:11:49.983958  6092 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow\python\ops\image_ops_impl.py:1514: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
W0904 08:11:49.999558  6092 deprecation.py:323] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:46: DatasetV1.make_one_shot_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.
W0904 08:11:50.015158  6092 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_input.py:49: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.
labels1 : 

 Tensor("IteratorGetNext:1", shape=(?,), dtype=int64)
sess.run(labels1) : 
 [97 72 29 55 41 77 19 43 94 31 17 66 87 25 82 90 29 67  1 39 68 63 83 98
 36 76 75 98 83 67  9 35 13 18 56 33 10 41 21 84  9 87 75 75 19 54 36 70
  8 25 58 94 32 58 90 51 40 23 28 25 82 86 51 61 98 82 30 48 93 83 34 73
 26 50 62 98  1 40 60 48 23 47 14 18  7 89 11 78  7 75 34 66 92 45 65  3
 41 89 70 40  4 18 74 37 39 97 48  8  5 90 45 92 36 30 70 79 26 96 49 84
 15 81 72 31 92 89 80 70]
images1 : 
 Tensor("IteratorGetNext:0", shape=(?, 24, 24, 3), dtype=float32)
images1.shape : 
 (?, 24, 24, 3)
sess.run(images1).shape : 
 (128, 24, 24, 3)

Process finished with exit code 0

7、

8、cifar10 训练过程。20190903下班开始,到20190904上班,貌似 这个训练的速度很慢啊... 我没改训练相关的代码,是不是有哪些地方可以改进?

  ZC:CPU占用 基本保持 99%左右,这是我 自己手动停止的程序

  ZC:看到 下面 每10step,差不多就要耗时4+分钟,代码中 max_steps的值为100000,那么就要 10000个4分钟(方便点按4分钟计算)-->40000分钟--> 666.666667小时--> 27.777778天,那就要 差不多 一个月了...  处理方法?升级机子?用GPU?修改训练代码(还要保证准确率啊)?

"C:\Program Files\Python37\python.exe" E:/Project_Py37/cifar/cifar10/cifar10_train.py
WARNING: Logging before flag parsing goes to stderr.
W0903 17:01:04.763609  3520 lazy_loader.py:50] 
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
  * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  * https://github.com/tensorflow/addons
  * https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.

W0903 17:01:05.115609  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:127: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead.

W0903 17:01:05.116609  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:120: The name tf.gfile.Exists is deprecated. Please use tf.io.gfile.exists instead.

W0903 17:01:05.116609  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:121: The name tf.gfile.DeleteRecursively is deprecated. Please use tf.io.gfile.rmtree instead.

W0903 17:01:05.116609  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:122: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.

W0903 17:01:05.117609  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:62: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.

main(1) :  ./tmp/cifar10_train
I0903 17:01:05.120609  3520 dataset_builder.py:184] Overwrite dataset info from restored data version.
I0903 17:01:05.122608  3520 dataset_builder.py:253] Reusing dataset cifar10 (C:\Users\Administrator\tensorflow_datasets\cifar10\1.0.2)
I0903 17:01:05.122608  3520 dataset_builder.py:399] Constructing tf.data.Dataset for split train, from C:\Users\Administrator\tensorflow_datasets\cifar10\1.0.2
W0903 17:01:05.122608  3520 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits.
W0903 17:01:05.187609  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10_input.py:65: The name tf.random_crop is deprecated. Please use tf.image.random_crop instead.

W0903 17:01:05.219609  3520 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow\python\ops\image_ops_impl.py:1514: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
W0903 17:01:05.228609  3520 deprecation.py:323] From E:\Project_Py37\cifar\cifar10\cifar10_input.py:46: DatasetV1.make_one_shot_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.
W0903 17:01:05.240608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10_input.py:49: The name tf.summary.image is deprecated. Please use tf.compat.v1.summary.image instead.

W0903 17:01:05.242608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:178: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.

W0903 17:01:05.242608  3520 deprecation.py:506] From E:\Project_Py37\cifar\cifar10\cifar10.py:126: calling TruncatedNormal.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
W0903 17:01:05.242608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:102: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.

W0903 17:01:05.250608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:85: The name tf.summary.histogram is deprecated. Please use tf.compat.v1.summary.histogram instead.

W0903 17:01:05.251609  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:86: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.

W0903 17:01:05.262609  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:190: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.

W0903 17:01:05.293608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:129: The name tf.add_to_collection is deprecated. Please use tf.compat.v1.add_to_collection instead.

W0903 17:01:05.350608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:270: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.

W0903 17:01:05.350608  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:318: The name tf.train.exponential_decay is deprecated. Please use tf.compat.v1.train.exponential_decay instead.

I0903 17:01:05.373208  3520 summary_op_util.py:66] Summary name local3/weight_loss (raw) is illegal; using local3/weight_loss__raw_ instead.
I0903 17:01:05.373208  3520 summary_op_util.py:66] Summary name local4/weight_loss (raw) is illegal; using local4/weight_loss__raw_ instead.
I0903 17:01:05.373208  3520 summary_op_util.py:66] Summary name cross_entropy (raw) is illegal; using cross_entropy__raw_ instead.
I0903 17:01:05.373208  3520 summary_op_util.py:66] Summary name total_loss (raw) is illegal; using total_loss__raw_ instead.
W0903 17:01:05.373208  3520 deprecation_wrapper.py:119] From E:\Project_Py37\cifar\cifar10\cifar10.py:330: The name tf.train.GradientDescentOptimizer is deprecated. Please use tf.compat.v1.train.GradientDescentOptimizer instead.

W0903 17:01:05.467408  3520 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow\python\training\moving_averages.py:433: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
W0903 17:01:05.611208  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:81: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead.

W0903 17:01:05.611208  3520 deprecation_wrapper.py:119] From E:/Project_Py37/cifar/cifar10/cifar10_train.py:107: The name tf.train.MonitoredTrainingSession is deprecated. Please use tf.compat.v1.train.MonitoredTrainingSession instead.

I0903 17:01:05.611208  3520 basic_session_run_hooks.py:541] Create CheckpointSaverHook.
W0903 17:01:05.810209  3520 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow\python\ops\array_ops.py:1354: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
I0903 17:01:05.862209  3520 monitored_session.py:240] Graph was finalized.
2019-09-03 17:01:05.863209: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
I0903 17:01:05.951209  3520 session_manager.py:500] Running local_init_op.
I0903 17:01:05.961209  3520 session_manager.py:502] Done running local_init_op.
I0903 17:01:06.295208  3520 basic_session_run_hooks.py:606] Saving checkpoints for 0 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 17:01:33.559809: step 0, loss = 4.68 (46.1 examples/sec; 2.777 sec/batch)
2019-09-03 17:06:00.632410: step 10, loss = 4.59 (4.8 examples/sec; 26.707 sec/batch)
2019-09-03 17:10:33.134212: step 20, loss = 4.48 (4.7 examples/sec; 27.250 sec/batch)
I0903 17:11:28.001412  3520 basic_session_run_hooks.py:606] Saving checkpoints for 23 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 17:15:07.789814: step 30, loss = 4.39 (4.7 examples/sec; 27.466 sec/batch)
2019-09-03 17:19:44.396016: step 40, loss = 4.20 (4.6 examples/sec; 27.661 sec/batch)
I0903 17:21:34.979816  3520 basic_session_run_hooks.py:606] Saving checkpoints for 45 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 17:24:21.915417: step 50, loss = 4.28 (4.6 examples/sec; 27.752 sec/batch)
2019-09-03 17:29:00.172619: step 60, loss = 4.24 (4.6 examples/sec; 27.826 sec/batch)
I0903 17:31:47.024620  3520 basic_session_run_hooks.py:606] Saving checkpoints for 67 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 17:33:39.251021: step 70, loss = 4.14 (4.6 examples/sec; 27.908 sec/batch)
2019-09-03 17:38:17.761823: step 80, loss = 4.18 (4.6 examples/sec; 27.851 sec/batch)
I0903 17:42:01.403424  3520 basic_session_run_hooks.py:606] Saving checkpoints for 89 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 17:42:58.203025: step 90, loss = 4.08 (4.6 examples/sec; 28.044 sec/batch)
I0903 17:47:38.394626  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0361685
2019-09-03 17:47:38.831426: step 100, loss = 4.02 (4.6 examples/sec; 28.063 sec/batch)
I0903 17:52:18.321028  3520 basic_session_run_hooks.py:606] Saving checkpoints for 111 into ./tmp/cifar10_train\model.ckpt.
W0903 17:52:18.539428  3520 deprecation.py:323] From C:\Program Files\Python37\lib\site-packages\tensorflow\python\training\saver.py:960: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
2019-09-03 17:52:18.679828: step 110, loss = 4.06 (4.6 examples/sec; 27.985 sec/batch)
2019-09-03 17:56:58.434630: step 120, loss = 3.97 (4.6 examples/sec; 27.975 sec/batch)
2019-09-03 18:01:38.793432: step 130, loss = 4.00 (4.6 examples/sec; 28.036 sec/batch)
I0903 18:02:35.000232  3520 basic_session_run_hooks.py:606] Saving checkpoints for 133 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 18:06:19.767034: step 140, loss = 3.96 (4.6 examples/sec; 28.097 sec/batch)
2019-09-03 18:11:00.177035: step 150, loss = 3.88 (4.6 examples/sec; 28.041 sec/batch)
I0903 18:12:52.122636  3520 basic_session_run_hooks.py:606] Saving checkpoints for 155 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 18:15:40.680637: step 160, loss = 3.96 (4.6 examples/sec; 28.050 sec/batch)
2019-09-03 18:20:21.527439: step 170, loss = 3.96 (4.6 examples/sec; 28.085 sec/batch)
I0903 18:23:09.913840  3520 basic_session_run_hooks.py:606] Saving checkpoints for 177 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 18:25:03.076241: step 180, loss = 3.81 (4.5 examples/sec; 28.155 sec/batch)
2019-09-03 18:29:44.063443: step 190, loss = 3.83 (4.6 examples/sec; 28.099 sec/batch)
I0903 18:33:28.831244  3520 basic_session_run_hooks.py:606] Saving checkpoints for 199 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 18:34:25.820044: step 200, loss = 3.82 (4.5 examples/sec; 28.176 sec/batch)
I0903 18:34:25.820044  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0356196
2019-09-03 18:39:06.978846: step 210, loss = 3.74 (4.6 examples/sec; 28.116 sec/batch)
I0903 18:43:47.950448  3520 basic_session_run_hooks.py:606] Saving checkpoints for 221 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 18:43:48.792848: step 220, loss = 3.73 (4.5 examples/sec; 28.181 sec/batch)
2019-09-03 18:48:29.982850: step 230, loss = 3.71 (4.6 examples/sec; 28.119 sec/batch)
2019-09-03 18:53:10.892052: step 240, loss = 3.67 (4.6 examples/sec; 28.091 sec/batch)
I0903 18:54:07.052052  3520 basic_session_run_hooks.py:606] Saving checkpoints for 243 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 18:57:52.628053: step 250, loss = 3.77 (4.5 examples/sec; 28.174 sec/batch)
2019-09-03 19:02:33.374655: step 260, loss = 3.62 (4.6 examples/sec; 28.075 sec/batch)
I0903 19:04:25.771056  3520 basic_session_run_hooks.py:606] Saving checkpoints for 265 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 19:07:15.031057: step 270, loss = 3.66 (4.5 examples/sec; 28.166 sec/batch)
2019-09-03 19:11:55.784259: step 280, loss = 3.72 (4.6 examples/sec; 28.075 sec/batch)
I0903 19:14:44.248660  3520 basic_session_run_hooks.py:606] Saving checkpoints for 287 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 19:16:37.021061: step 290, loss = 3.68 (4.6 examples/sec; 28.124 sec/batch)
I0903 19:21:17.789862  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0355623
2019-09-03 19:21:18.304662: step 300, loss = 3.36 (4.6 examples/sec; 28.128 sec/batch)
I0903 19:25:03.209864  3520 basic_session_run_hooks.py:606] Saving checkpoints for 309 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 19:25:59.697464: step 310, loss = 3.52 (4.5 examples/sec; 28.139 sec/batch)
2019-09-03 19:30:40.216666: step 320, loss = 3.55 (4.6 examples/sec; 28.052 sec/batch)
I0903 19:35:20.828468  3520 basic_session_run_hooks.py:606] Saving checkpoints for 331 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 19:35:21.733268: step 330, loss = 3.53 (4.5 examples/sec; 28.152 sec/batch)
2019-09-03 19:40:01.659670: step 340, loss = 3.38 (4.6 examples/sec; 27.993 sec/batch)
2019-09-03 19:44:41.929271: step 350, loss = 3.37 (4.6 examples/sec; 28.027 sec/batch)
I0903 19:45:37.933272  3520 basic_session_run_hooks.py:606] Saving checkpoints for 353 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 19:49:22.760473: step 360, loss = 3.36 (4.6 examples/sec; 28.083 sec/batch)
2019-09-03 19:54:03.201675: step 370, loss = 3.26 (4.6 examples/sec; 28.044 sec/batch)
I0903 19:55:55.630876  3520 basic_session_run_hooks.py:606] Saving checkpoints for 375 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 19:58:44.859677: step 380, loss = 3.28 (4.5 examples/sec; 28.166 sec/batch)
2019-09-03 20:03:25.464679: step 390, loss = 3.30 (4.6 examples/sec; 28.061 sec/batch)
I0903 20:06:13.765280  3520 basic_session_run_hooks.py:606] Saving checkpoints for 397 into ./tmp/cifar10_train\model.ckpt.
I0903 20:08:06.756080  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0356003
2019-09-03 20:08:06.756080: step 400, loss = 3.46 (4.6 examples/sec; 28.129 sec/batch)
2019-09-03 20:12:47.181682: step 410, loss = 3.34 (4.6 examples/sec; 28.043 sec/batch)
I0903 20:16:31.416084  3520 basic_session_run_hooks.py:606] Saving checkpoints for 419 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 20:17:28.137684: step 420, loss = 3.11 (4.6 examples/sec; 28.096 sec/batch)
2019-09-03 20:22:08.376086: step 430, loss = 3.26 (4.6 examples/sec; 28.024 sec/batch)
I0903 20:26:48.864088  3520 basic_session_run_hooks.py:606] Saving checkpoints for 441 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 20:26:49.737688: step 440, loss = 3.24 (4.5 examples/sec; 28.136 sec/batch)
2019-09-03 20:31:30.386689: step 450, loss = 3.16 (4.6 examples/sec; 28.065 sec/batch)
2019-09-03 20:36:10.937091: step 460, loss = 3.33 (4.6 examples/sec; 28.055 sec/batch)
I0903 20:37:06.691492  3520 basic_session_run_hooks.py:606] Saving checkpoints for 463 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 20:40:51.159893: step 470, loss = 3.14 (4.6 examples/sec; 28.022 sec/batch)
2019-09-03 20:45:31.211095: step 480, loss = 3.37 (4.6 examples/sec; 28.005 sec/batch)
I0903 20:47:22.829095  3520 basic_session_run_hooks.py:606] Saving checkpoints for 485 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 20:50:11.231097: step 490, loss = 3.01 (4.6 examples/sec; 28.002 sec/batch)
I0903 20:54:51.282298  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0356566
2019-09-03 20:54:51.812698: step 500, loss = 3.00 (4.6 examples/sec; 28.058 sec/batch)
I0903 20:57:39.465899  3520 basic_session_run_hooks.py:606] Saving checkpoints for 507 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 20:59:31.489500: step 510, loss = 3.28 (4.6 examples/sec; 27.968 sec/batch)
2019-09-03 21:04:11.330902: step 520, loss = 3.46 (4.6 examples/sec; 27.984 sec/batch)
I0903 21:07:54.941303  3520 basic_session_run_hooks.py:606] Saving checkpoints for 529 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 21:08:51.509904: step 530, loss = 2.99 (4.6 examples/sec; 28.018 sec/batch)
2019-09-03 21:13:30.999506: step 540, loss = 3.04 (4.6 examples/sec; 27.949 sec/batch)
I0903 21:18:10.520307  3520 basic_session_run_hooks.py:606] Saving checkpoints for 551 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 21:18:11.347107: step 550, loss = 3.13 (4.6 examples/sec; 28.035 sec/batch)
2019-09-03 21:22:50.992709: step 560, loss = 3.13 (4.6 examples/sec; 27.965 sec/batch)
2019-09-03 21:27:30.435511: step 570, loss = 2.99 (4.6 examples/sec; 27.944 sec/batch)
I0903 21:28:26.595511  3520 basic_session_run_hooks.py:606] Saving checkpoints for 573 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 21:32:11.034713: step 580, loss = 2.98 (4.6 examples/sec; 28.060 sec/batch)
2019-09-03 21:36:50.978715: step 590, loss = 3.24 (4.6 examples/sec; 27.994 sec/batch)
I0903 21:38:42.877515  3520 basic_session_run_hooks.py:606] Saving checkpoints for 595 into ./tmp/cifar10_train\model.ckpt.
I0903 21:41:31.529116  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0357111
2019-09-03 21:41:31.575916: step 600, loss = 2.94 (4.6 examples/sec; 28.060 sec/batch)
2019-09-03 21:46:11.268318: step 610, loss = 2.89 (4.6 examples/sec; 27.969 sec/batch)
I0903 21:48:59.233519  3520 basic_session_run_hooks.py:606] Saving checkpoints for 617 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 21:50:51.569120: step 620, loss = 2.95 (4.6 examples/sec; 28.030 sec/batch)
2019-09-03 21:55:31.043122: step 630, loss = 3.00 (4.6 examples/sec; 27.947 sec/batch)
I0903 21:59:15.137123  3520 basic_session_run_hooks.py:606] Saving checkpoints for 639 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 22:00:11.858724: step 640, loss = 3.14 (4.6 examples/sec; 28.082 sec/batch)
2019-09-03 22:04:51.063925: step 650, loss = 3.06 (4.6 examples/sec; 27.921 sec/batch)
I0903 22:09:30.773927  3520 basic_session_run_hooks.py:606] Saving checkpoints for 661 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 22:09:31.678727: step 660, loss = 2.79 (4.6 examples/sec; 28.061 sec/batch)
2019-09-03 22:14:11.261929: step 670, loss = 2.70 (4.6 examples/sec; 27.958 sec/batch)
2019-09-03 22:18:50.799331: step 680, loss = 2.83 (4.6 examples/sec; 27.954 sec/batch)
I0903 22:19:46.943731  3520 basic_session_run_hooks.py:606] Saving checkpoints for 683 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 22:23:31.302932: step 690, loss = 2.98 (4.6 examples/sec; 28.050 sec/batch)
I0903 22:28:10.979734  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0357213
2019-09-03 22:28:11.510134: step 700, loss = 3.04 (4.6 examples/sec; 28.021 sec/batch)
I0903 22:30:03.050135  3520 basic_session_run_hooks.py:606] Saving checkpoints for 705 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 22:32:51.191936: step 710, loss = 2.73 (4.6 examples/sec; 27.968 sec/batch)
2019-09-03 22:37:30.619138: step 720, loss = 3.09 (4.6 examples/sec; 27.943 sec/batch)
I0903 22:40:18.053939  3520 basic_session_run_hooks.py:606] Saving checkpoints for 727 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 22:42:10.701540: step 730, loss = 2.78 (4.6 examples/sec; 28.008 sec/batch)
2019-09-03 22:46:49.769941: step 740, loss = 2.71 (4.6 examples/sec; 27.907 sec/batch)
I0903 22:50:32.662743  3520 basic_session_run_hooks.py:606] Saving checkpoints for 749 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 22:51:29.306343: step 750, loss = 3.05 (4.6 examples/sec; 27.954 sec/batch)
2019-09-03 22:56:08.047145: step 760, loss = 2.59 (4.6 examples/sec; 27.874 sec/batch)
I0903 23:00:46.959547  3520 basic_session_run_hooks.py:606] Saving checkpoints for 771 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 23:00:47.770747: step 770, loss = 2.48 (4.6 examples/sec; 27.972 sec/batch)
2019-09-03 23:05:27.002749: step 780, loss = 2.69 (4.6 examples/sec; 27.923 sec/batch)
2019-09-03 23:10:06.258350: step 790, loss = 2.73 (4.6 examples/sec; 27.926 sec/batch)
I0903 23:11:02.121951  3520 basic_session_run_hooks.py:606] Saving checkpoints for 793 into ./tmp/cifar10_train\model.ckpt.
I0903 23:14:46.200352  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0357754
2019-09-03 23:14:46.247152: step 800, loss = 2.72 (4.6 examples/sec; 27.999 sec/batch)
2019-09-03 23:19:25.315554: step 810, loss = 2.91 (4.6 examples/sec; 27.907 sec/batch)
I0903 23:21:16.902355  3520 basic_session_run_hooks.py:606] Saving checkpoints for 815 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 23:24:04.789556: step 820, loss = 2.87 (4.6 examples/sec; 27.947 sec/batch)
2019-09-03 23:28:43.533358: step 830, loss = 2.57 (4.6 examples/sec; 27.874 sec/batch)
I0903 23:31:30.992959  3520 basic_session_run_hooks.py:606] Saving checkpoints for 837 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 23:33:23.127159: step 840, loss = 2.73 (4.6 examples/sec; 27.959 sec/batch)
2019-09-03 23:38:02.117561: step 850, loss = 2.59 (4.6 examples/sec; 27.899 sec/batch)
I0903 23:41:45.634362  3520 basic_session_run_hooks.py:606] Saving checkpoints for 859 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 23:42:42.075163: step 860, loss = 2.67 (4.6 examples/sec; 27.996 sec/batch)
2019-09-03 23:47:20.940765: step 870, loss = 2.48 (4.6 examples/sec; 27.887 sec/batch)
I0903 23:51:59.900966  3520 basic_session_run_hooks.py:606] Saving checkpoints for 881 into ./tmp/cifar10_train\model.ckpt.
2019-09-03 23:52:00.743367: step 880, loss = 2.70 (4.6 examples/sec; 27.980 sec/batch)
2019-09-03 23:56:40.264168: step 890, loss = 2.47 (4.6 examples/sec; 27.952 sec/batch)
I0904 00:01:18.887770  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0358078
2019-09-04 00:01:19.402570: step 900, loss = 2.42 (4.6 examples/sec; 27.914 sec/batch)
I0904 00:02:14.907371  3520 basic_session_run_hooks.py:606] Saving checkpoints for 903 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 00:05:58.034172: step 910, loss = 2.73 (4.6 examples/sec; 27.863 sec/batch)
2019-09-04 00:10:36.338174: step 920, loss = 2.45 (4.6 examples/sec; 27.830 sec/batch)
I0904 00:12:27.675374  3520 basic_session_run_hooks.py:606] Saving checkpoints for 925 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 00:15:15.281775: step 930, loss = 2.52 (4.6 examples/sec; 27.894 sec/batch)
2019-09-04 00:19:53.884177: step 940, loss = 2.45 (4.6 examples/sec; 27.860 sec/batch)
I0904 00:22:40.850978  3520 basic_session_run_hooks.py:606] Saving checkpoints for 947 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 00:24:33.030579: step 950, loss = 2.52 (4.6 examples/sec; 27.915 sec/batch)
2019-09-04 00:29:11.724581: step 960, loss = 2.30 (4.6 examples/sec; 27.869 sec/batch)
I0904 00:32:54.471182  3520 basic_session_run_hooks.py:606] Saving checkpoints for 969 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 00:33:50.903983: step 970, loss = 2.42 (4.6 examples/sec; 27.918 sec/batch)
2019-09-04 00:38:29.083184: step 980, loss = 2.35 (4.6 examples/sec; 27.818 sec/batch)
I0904 00:43:07.823986  3520 basic_session_run_hooks.py:606] Saving checkpoints for 991 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 00:43:08.681986: step 990, loss = 2.42 (4.6 examples/sec; 27.960 sec/batch)
I0904 00:47:47.266788  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0358631
2019-09-04 00:47:47.313588: step 1000, loss = 2.43 (4.6 examples/sec; 27.863 sec/batch)
2019-09-04 00:52:25.461590: step 1010, loss = 2.50 (4.6 examples/sec; 27.815 sec/batch)
I0904 00:53:21.013190  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1013 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 00:57:04.139992: step 1020, loss = 2.38 (4.6 examples/sec; 27.868 sec/batch)
2019-09-04 01:01:42.901393: step 1030, loss = 2.63 (4.6 examples/sec; 27.876 sec/batch)
I0904 01:03:34.381994  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1035 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 01:06:22.144395: step 1040, loss = 2.33 (4.6 examples/sec; 27.924 sec/batch)
2019-09-04 01:11:00.729197: step 1050, loss = 2.33 (4.6 examples/sec; 27.858 sec/batch)
I0904 01:13:47.820798  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1057 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 01:15:39.563599: step 1060, loss = 2.27 (4.6 examples/sec; 27.883 sec/batch)
2019-09-04 01:20:17.758400: step 1070, loss = 2.20 (4.6 examples/sec; 27.819 sec/batch)
I0904 01:24:00.261202  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1079 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 01:24:56.608402: step 1080, loss = 2.03 (4.6 examples/sec; 27.885 sec/batch)
2019-09-04 01:29:34.803204: step 1090, loss = 2.29 (4.6 examples/sec; 27.819 sec/batch)
I0904 01:34:13.603406  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0358894
I0904 01:34:14.133806  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1101 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 01:34:14.508206: step 1100, loss = 2.28 (4.6 examples/sec; 27.971 sec/batch)
2019-09-04 01:38:52.297408: step 1110, loss = 2.40 (4.6 examples/sec; 27.779 sec/batch)
2019-09-04 01:43:30.429809: step 1120, loss = 2.34 (4.6 examples/sec; 27.813 sec/batch)
I0904 01:44:25.997010  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1123 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 01:48:08.983411: step 1130, loss = 2.25 (4.6 examples/sec; 27.855 sec/batch)
2019-09-04 01:52:47.256213: step 1140, loss = 2.17 (4.6 examples/sec; 27.827 sec/batch)
I0904 01:54:38.468614  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1145 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 01:57:25.872215: step 1150, loss = 2.55 (4.6 examples/sec; 27.862 sec/batch)
2019-09-04 02:02:03.978417: step 1160, loss = 2.37 (4.6 examples/sec; 27.811 sec/batch)
I0904 02:04:50.761018  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1167 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 02:06:42.815818: step 1170, loss = 2.32 (4.6 examples/sec; 27.884 sec/batch)
2019-09-04 02:11:20.729820: step 1180, loss = 2.21 (4.6 examples/sec; 27.791 sec/batch)
I0904 02:15:03.201421  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1189 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 02:15:59.486222: step 1190, loss = 2.27 (4.6 examples/sec; 27.876 sec/batch)
I0904 02:20:37.665424  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0359187
2019-09-04 02:20:38.117824: step 1200, loss = 2.16 (4.6 examples/sec; 27.863 sec/batch)
I0904 02:25:16.375025  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1211 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 02:25:16.702625: step 1210, loss = 2.12 (4.6 examples/sec; 27.858 sec/batch)
2019-09-04 02:29:54.554227: step 1220, loss = 2.19 (4.6 examples/sec; 27.785 sec/batch)
2019-09-04 02:34:32.342229: step 1230, loss = 2.22 (4.6 examples/sec; 27.779 sec/batch)
I0904 02:35:27.862629  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1233 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 02:39:11.207831: step 1240, loss = 2.17 (4.6 examples/sec; 27.887 sec/batch)
2019-09-04 02:43:49.184233: step 1250, loss = 2.40 (4.6 examples/sec; 27.798 sec/batch)
I0904 02:45:40.240633  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1255 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 02:48:27.472634: step 1260, loss = 2.22 (4.6 examples/sec; 27.829 sec/batch)
2019-09-04 02:53:05.184836: step 1270, loss = 2.31 (4.6 examples/sec; 27.771 sec/batch)
I0904 02:55:52.136037  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1277 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 02:57:44.206438: step 1280, loss = 2.21 (4.6 examples/sec; 27.902 sec/batch)
2019-09-04 03:02:22.206040: step 1290, loss = 2.14 (4.6 examples/sec; 27.800 sec/batch)
I0904 03:06:04.240841  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1299 into ./tmp/cifar10_train\model.ckpt.
I0904 03:07:00.590042  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0359334
2019-09-04 03:07:00.590042: step 1300, loss = 2.16 (4.6 examples/sec; 27.838 sec/batch)
2019-09-04 03:11:38.441643: step 1310, loss = 2.13 (4.6 examples/sec; 27.785 sec/batch)
I0904 03:16:16.355645  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1321 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 03:16:17.182445: step 1320, loss = 2.09 (4.6 examples/sec; 27.874 sec/batch)
2019-09-04 03:20:54.566047: step 1330, loss = 2.13 (4.6 examples/sec; 27.738 sec/batch)
2019-09-04 03:25:32.152449: step 1340, loss = 2.14 (4.6 examples/sec; 27.759 sec/batch)
I0904 03:26:27.782049  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1343 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 03:30:10.955650: step 1350, loss = 2.35 (4.6 examples/sec; 27.880 sec/batch)
2019-09-04 03:34:48.907852: step 1360, loss = 2.09 (4.6 examples/sec; 27.795 sec/batch)
I0904 03:36:40.089053  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1365 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 03:39:27.695454: step 1370, loss = 2.14 (4.6 examples/sec; 27.879 sec/batch)
2019-09-04 03:44:05.223856: step 1380, loss = 1.82 (4.6 examples/sec; 27.753 sec/batch)
I0904 03:46:51.925457  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1387 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 03:48:43.730658: step 1390, loss = 1.94 (4.6 examples/sec; 27.851 sec/batch)
I0904 03:53:21.863059  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0359548
2019-09-04 03:53:22.362259: step 1400, loss = 1.89 (4.6 examples/sec; 27.863 sec/batch)
I0904 03:57:04.116261  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1409 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 03:57:59.979861: step 1410, loss = 2.06 (4.6 examples/sec; 27.762 sec/batch)
2019-09-04 04:02:37.306063: step 1420, loss = 2.11 (4.6 examples/sec; 27.733 sec/batch)
I0904 04:07:14.863665  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1431 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 04:07:15.721665: step 1430, loss = 2.09 (4.6 examples/sec; 27.842 sec/batch)
2019-09-04 04:11:53.042866: step 1440, loss = 2.14 (4.6 examples/sec; 27.732 sec/batch)
2019-09-04 04:16:30.364068: step 1450, loss = 1.88 (4.6 examples/sec; 27.732 sec/batch)
I0904 04:17:25.744069  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1453 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 04:21:08.059670: step 1460, loss = 1.84 (4.6 examples/sec; 27.770 sec/batch)
2019-09-04 04:25:45.131272: step 1470, loss = 2.13 (4.6 examples/sec; 27.707 sec/batch)
I0904 04:27:36.078472  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1475 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 04:30:23.107674: step 1480, loss = 1.97 (4.6 examples/sec; 27.798 sec/batch)
2019-09-04 04:35:00.045875: step 1490, loss = 1.95 (4.6 examples/sec; 27.694 sec/batch)
I0904 04:37:46.435477  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1497 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 04:39:38.225077: step 1500, loss = 1.93 (4.6 examples/sec; 27.818 sec/batch)
I0904 04:39:38.225077  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0360184
2019-09-04 04:44:15.780279: step 1510, loss = 2.29 (4.6 examples/sec; 27.756 sec/batch)
I0904 04:47:58.345480  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1519 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 04:48:55.004681: step 1520, loss = 2.00 (4.6 examples/sec; 27.922 sec/batch)
2019-09-04 04:53:32.201082: step 1530, loss = 1.98 (4.6 examples/sec; 27.720 sec/batch)
I0904 04:58:09.381884  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1541 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 04:58:10.177484: step 1540, loss = 1.83 (4.6 examples/sec; 27.798 sec/batch)
2019-09-04 05:02:47.689886: step 1550, loss = 2.03 (4.6 examples/sec; 27.751 sec/batch)
2019-09-04 05:07:25.073488: step 1560, loss = 1.93 (4.6 examples/sec; 27.738 sec/batch)
I0904 05:08:20.656288  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1563 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 05:12:03.283890: step 1570, loss = 1.84 (4.6 examples/sec; 27.821 sec/batch)
2019-09-04 05:16:40.449091: step 1580, loss = 1.93 (4.6 examples/sec; 27.717 sec/batch)
I0904 05:18:31.318292  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1585 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 05:21:18.519093: step 1590, loss = 2.13 (4.6 examples/sec; 27.807 sec/batch)
I0904 05:25:55.855895  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0360019
2019-09-04 05:25:56.417495: step 1600, loss = 1.81 (4.6 examples/sec; 27.790 sec/batch)
I0904 05:28:42.604296  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1607 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 05:30:34.471897: step 1610, loss = 1.96 (4.6 examples/sec; 27.805 sec/batch)
2019-09-04 05:35:11.756299: step 1620, loss = 1.80 (4.6 examples/sec; 27.728 sec/batch)
I0904 05:38:53.557100  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1629 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 05:39:49.654700: step 1630, loss = 1.91 (4.6 examples/sec; 27.790 sec/batch)
2019-09-04 05:44:26.601502: step 1640, loss = 1.92 (4.6 examples/sec; 27.695 sec/batch)
I0904 05:49:03.610704  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1651 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 05:49:04.437504: step 1650, loss = 1.84 (4.6 examples/sec; 27.784 sec/batch)
2019-09-04 05:53:41.337506: step 1660, loss = 2.00 (4.6 examples/sec; 27.690 sec/batch)
2019-09-04 05:58:18.393507: step 1670, loss = 1.73 (4.6 examples/sec; 27.706 sec/batch)
I0904 05:59:13.960708  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1673 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 06:02:56.860509: step 1680, loss = 1.73 (4.6 examples/sec; 27.847 sec/batch)
2019-09-04 06:07:34.696511: step 1690, loss = 1.85 (4.6 examples/sec; 27.784 sec/batch)
I0904 06:09:25.924511  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1695 into ./tmp/cifar10_train\model.ckpt.
I0904 06:12:13.218913  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0360054
2019-09-04 06:12:13.250113: step 1700, loss = 1.90 (4.6 examples/sec; 27.855 sec/batch)
2019-09-04 06:16:50.290515: step 1710, loss = 1.83 (4.6 examples/sec; 27.704 sec/batch)
I0904 06:19:36.477316  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1717 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 06:21:28.360516: step 1720, loss = 1.90 (4.6 examples/sec; 27.807 sec/batch)
2019-09-04 06:26:05.091918: step 1730, loss = 2.02 (4.6 examples/sec; 27.673 sec/batch)
I0904 06:29:46.502720  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1739 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 06:30:42.569120: step 1740, loss = 1.65 (4.6 examples/sec; 27.748 sec/batch)
2019-09-04 06:35:21.255522: step 1750, loss = 1.84 (4.6 examples/sec; 27.869 sec/batch)
I0904 06:39:59.356724  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1761 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 06:39:59.746723: step 1760, loss = 1.76 (4.6 examples/sec; 27.849 sec/batch)
2019-09-04 06:44:38.347125: step 1770, loss = 1.92 (4.6 examples/sec; 27.860 sec/batch)
2019-09-04 06:49:16.947527: step 1780, loss = 1.73 (4.6 examples/sec; 27.860 sec/batch)
I0904 06:50:12.639527  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1783 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 06:53:56.265529: step 1790, loss = 1.71 (4.6 examples/sec; 27.932 sec/batch)
I0904 06:58:34.803530  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0359507
2019-09-04 06:58:35.333931: step 1800, loss = 1.55 (4.6 examples/sec; 27.907 sec/batch)
I0904 07:00:26.234331  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1805 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 07:03:13.367132: step 1810, loss = 1.75 (4.6 examples/sec; 27.803 sec/batch)
2019-09-04 07:07:51.125134: step 1820, loss = 1.91 (4.6 examples/sec; 27.776 sec/batch)
I0904 07:10:37.405535  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1827 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 07:12:28.851936: step 1830, loss = 1.85 (4.6 examples/sec; 27.773 sec/batch)
2019-09-04 07:17:07.655138: step 1840, loss = 1.59 (4.6 examples/sec; 27.880 sec/batch)
I0904 07:20:51.015939  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1849 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 07:21:47.300739: step 1850, loss = 1.72 (4.6 examples/sec; 27.965 sec/batch)
2019-09-04 07:26:26.649941: step 1860, loss = 1.75 (4.6 examples/sec; 27.935 sec/batch)
I0904 07:31:06.128943  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1871 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 07:31:06.924543: step 1870, loss = 1.71 (4.6 examples/sec; 28.027 sec/batch)
2019-09-04 07:35:46.576145: step 1880, loss = 1.90 (4.6 examples/sec; 27.965 sec/batch)
2019-09-04 07:40:26.362147: step 1890, loss = 1.78 (4.6 examples/sec; 27.979 sec/batch)
I0904 07:41:22.241347  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1893 into ./tmp/cifar10_train\model.ckpt.
I0904 07:45:06.257348  3520 basic_session_run_hooks.py:692] global_step/sec: 0.0358236
2019-09-04 07:45:06.304148: step 1900, loss = 1.63 (4.6 examples/sec; 27.994 sec/batch)
2019-09-04 07:49:45.700150: step 1910, loss = 1.62 (4.6 examples/sec; 27.940 sec/batch)
I0904 07:51:37.630151  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1915 into ./tmp/cifar10_train\model.ckpt.
2019-09-04 07:54:25.673352: step 1920, loss = 1.67 (4.6 examples/sec; 27.997 sec/batch)
2019-09-04 07:59:05.396754: step 1930, loss = 1.80 (4.6 examples/sec; 27.972 sec/batch)
I0904 08:01:53.514355  3520 basic_session_run_hooks.py:606] Saving checkpoints for 1937 into ./tmp/cifar10_train\model.ckpt.

Process finished with exit code -1

9、

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
java将前端的json数组字符串转换为列表
记录下在前端通过ajax提交了一个json数组的字符串,在后端如何转换为列表。前端数据转化与请求varcontracts{id:'1',name:'yanggb合同1'},{id:'2',name:'yanggb合同2'},{id:'3',name:'yang
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Java修道之路,问鼎巅峰,我辈代码修仙法力齐天
<center<fontcolor00FF7Fsize5face"黑体"代码尽头谁为峰,一见秃头道成空。</font<center<fontcolor00FF00size5face"黑体"编程修真路破折,一步一劫渡飞升。</font众所周知,编程修真有八大境界:1.Javase练气筑基2.数据库结丹3.web前端元婴4.Jav
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
Easter79
Easter79
Lv1
今生可爱与温柔,每一样都不能少。
文章
2.8k
粉丝
6
获赞
1.2k