/**
* Returns a {@code Collector} implementing a cascaded "group by" operation
* on input elements of type {@code T}, grouping elements according to a
* classification function, and then performing a reduction operation on
* the values associated with a given key using the specified downstream
* {@code Collector}. The {@code Map} produced by the Collector is created
* with the supplied factory function.
返回一个可级联的实现了分组功能的收集器,这个收集器根据T类型的输入参数,通过分类函数进行分类,然后使用指定的下游收集器执行一个汇聚操作。这个收集器的结果容器Map,由给定的工厂方法提供。
*
* <p>The classification function maps elements to some key type {@code K}.
* The downstream collector operates on elements of type {@code T} and
* produces a result of type {@code D}. The resulting collector produces a
* {@code Map<K, D>}.
分类方法将T类型的输入元素映射为K类型的key,作为结果map的key,下游收集器将T类型的输入元素转化为D类型的结果元素,最终结果收集器生产出Map<K,D>的结果。
*
* <p>For example, to compute the set of last names of people in each city,
* where the city names are sorted:
例子,收集人民群众的姓氏,结果根据城市分组。
* <pre>{@code
* Map<City, Set<String>> namesByCity
* = people.stream().collect(
* groupingBy(Person::getCity,对应分类函数classifier
* TreeMap::new,对应结果容器工厂mapFactory
* mapping(Person::getLastName, 对应下游收集器downstream
* toSet())));
* }</pre>
*groupingBy对应结果收集器,是最终的收集器。
* @implNote
* The returned {@code Collector} is not concurrent. For parallel stream
* pipelines, the {@code combiner} function operates by merging the keys
* from one map into another, which can be an expensive operation. If
* preservation of the order in which elements are presented to the downstream
* collector is not required, using {@link #groupingByConcurrent(Function, Supplier, Collector)}
* may offer better parallel performance.
返回的收集器不是并发的,对于并发流来说,组合器合并map的操作可能会很耗性能。
如果不需要保持元素在流中的顺序,推荐使用groupingByConcurrent,这可能要比使用parallel stream的性能更好。
* @param <T> the type of the input elements T:输入元素的类型
* @param <K> the type of the keys K:结果map中的key类型。
* @param <A> the intermediate accumulation type of the downstream collector
* @param <D> the result type of the downstream reduction
* @param <M> the type of the resulting {@code Map}
* @param classifier a classifier function mapping input elements to keys
* @param downstream a {@code Collector} implementing the downstream reduction
* @param mapFactory a supplier providing a new empty {@code Map}
* into which the results will be inserted
* @return a {@code Collector} implementing the cascaded group-by operation
*
* @see #groupingBy(Function, Collector)
* @see #groupingBy(Function)
* @see #groupingByConcurrent(Function, Supplier, Collector)
T:输入元素的类型。
K:结果map中的key类型。
A: 下游收集器的累加器的容器类型(累加器的第一个参数)。
D: 下游收集器的结果类型。当下游收集器没有finisher的时候,A和D是直接相等的。A强转为D。
M: 最终结果类型,即Map<K,D>
最后返回一个实现了可级联分组的收集器。
这个方法总体来讲,就是给一个分组器,一个最终类型的生产者,一个收集器,根据这三个参数,来改造出一个能分组的收集器。
*/
public static <T, K, D, A, M extends Map<K, D>> //注意这里有5个参数类型
Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier,
Supplier<M> mapFactory,
Collector<? super T, A, D> downstream) {
Supplier<A> downstreamSupplier = downstream.supplier();
BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
BiConsumer<Map<K, A>, T> accumulator = (m, t) -> {
// 根据分类器得到的值,最为最终map中的键
K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
// 得到一下游收集器的生产者生产的容器,最为最终map中的值。
A container = m.computeIfAbsent(key, k -> downstreamSupplier.get());
// 消费这两个参数,进行累加操作,相当于修改了下游收集器的收集过程,让其成为最终收集器的累加器,累积出最终收集器需要的中间结果。
downstreamAccumulator.accept(container, t);
};
// 传入下游收集器的合并器,得到一个新的合并器,合并器合出来的值是经过改造的累加器的结果,所以是合出的最终类型Map<K,A>
BinaryOperator<Map<K, A>> merger = Collectors.<K, A, Map<K, A>>mapMerger(downstream.combiner());
// 将Map<K, D>类型的mapFactory强转为Map<K, A>类型,这其中包含了A到D的强转。
@SuppressWarnings("unchecked")
Supplier<Map<K, A>> mangledFactory = (Supplier<Map<K, A>>) mapFactory;
// 如果集合特性包含IDENTITY_FINISH,说明下游收集器的中间结果就是最终结果,不用再处理finisher
if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_ID);
} else {
//将下游收集器的finisher强转为输入A,输出A的finisher(限定类型)
@SuppressWarnings("unchecked")
Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher();
// 用强转好的finisher,处理所有元素,这时的元素是一个一个的map(前面合并的)
// intermediate代表一个map,将每个map都用改过的finisher处理一下,得到Map<K,A>类型,再强转一下,将Map<K,A>强转为Map<K,D>
Function<Map<K, A>, M> finisher = intermediate -> {
// 这里replace的只是value,将value处理成A类型
intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v));
@SuppressWarnings("unchecked")
M castResult = (M) intermediate;
return castResult;
};
return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_NOID);
}
}
/**
* {@code BinaryOperator<Map>} that merges the contents of its right
* argument into its left argument, using the provided merge function to
* handle duplicate keys.
将右边的参数合并到左边
*
* @param <K> type of the map keys
* @param <V> type of the map values
* @param <M> type of the map
* @param mergeFunction A merge function suitable for
* {@link Map#merge(Object, Object, BiFunction) Map.merge()}
* @return a merge function for two maps
*/
private static <K, V, M extends Map<K,V>>
BinaryOperator<M> mapMerger(BinaryOperator<V> mergeFunction) {
return (m1, m2) -> {
for (Map.Entry<K,V> e : m2.entrySet())
// 如果左边的map里面,左边map中没有右边合过来的key对应的值,就用右边合过来的值,
// ,如果有值,就使用合并器算出来的值,确保不冲突。
m1.merge(e.getKey(), e.getValue(), mergeFunction);
return m1;
};
}
java流stream中的Collectors中groupingBy源码笔记
点赞
收藏