记一次提升18倍的性能优化

捉虫大师
• 阅读 815

背景

最近负责的一个自研的 Dubbo 注册中心经常收到 CPU 使用率的告警,于是进行了一波优化,效果还不错,于是打算分享下思考、优化过程,希望对大家有一些帮助。

自研 Dubbo 注册中心是个什么东西,我画个简图大家稍微感受一下就好,看不懂也没关系,不影响后续的理解。

记一次提升18倍的性能优化

  • Consumer 和 Provider 的服务发现请求(注册、注销、订阅)都发给 Agent,由它全权代理
  • Registry 和 Agent 保持 Grpc 长链接,长链接的目的主要是 Provider 方有变更时,能及时推送给相应的 Consumer。为了保证数据的正确性,做了推拉结合的机制,Agent 会每隔一段时间去 Registry 拉取订阅的服务列表
  • Agent 和业务服务部署在同一台机器上,类似 Service Mesh 的思路,尽量减少对业务的入侵,这样就能快速的迭代了

回到今天的重点,这个注册中心最近 CPU 使用率长期处于中高水位,偶尔有应用发布,推送量大时,CPU 甚至会被打满。

以前没感觉到,是因为接入的应用不多,最近几个月应用越接越多,慢慢就达到了告警阈值。

寻找优化点

由于这项目是 Go 写的(不懂 Go 的朋友也没关系,本文重点在算法的优化,不在工具的使用上), 找到哪里耗 CPU 还是挺简单的:打开 pprof 即可,去线上采集一段时间即可。

具体怎么操作可以参考我之前的这篇文章,今天文章中用到的知识和工具,这篇文章都能找到。

记一次提升18倍的性能优化

CPU profile 截了部分图,其他的不太重要,可以看到消耗 CPU 多的是 AssembleCategoryProviders方法,与其直接关联的是

  • 2个 redis 相关的方法
  • 1个叫assembleUrlWeight的方法

稍微解释下,AssembleCategoryProviders 方法是构造返回 Dubbo provider 的 url,由于会在返回 url 时对其做一些处理(比如调整权重等),会涉及到对这个 Dubbo url 的解析。又由于推拉结合的模式,线上服务使用方越多,这个处理的 QPS 就越大,所以它占用了大部分 CPU 一点也不奇怪。

这两个 redis 操作可能是序列化占用了 CPU,更大头在 assembleUrlWeight,有点琢磨不透。

接下来我们就分析下 assembleUrlWeight 如何优化,因为他占用 CPU 最多,优化效果肯定最好。

下面是 assembleUrlWeight 的伪代码:

func AssembleUrlWeight(rawurl string, lidcWeight int) string {
    u, err := url.Parse(rawurl)
    if err != nil {
        return rawurl
    }

    values, err := url.ParseQuery(u.RawQuery)
    if err != nil {
        return rawurl
    }

    if values.Get("lidc_weight") != "" {
        return rawurl
    }

    endpointWeight := 100
    if values.Get("weight") != "" {
        endpointWeight, err = strconv.Atoi(values.Get("weight"))
        if err != nil {
            endpointWeight = 100
        }
    }

    values.Set("weight", strconv.Itoa(lidcWeight*endpointWeight))

    u.RawQuery = values.Encode()
    return u.String()
}

传参 rawurl 是 Dubbo provider 的url,lidcWeight 是机房权重。根据配置的机房权重,将 url 中的 weight 进行重新计算,实现多机房流量按权重的分配。

这个过程涉及到 url 参数的解析,再进行 weight 的计算,最后再还原为一个 url

Dubbo 的 url 结构和普通 url 结构一致,其特点是参数可能比较多,没有 #后面的片段部分。

记一次提升18倍的性能优化

CPU 主要就消耗在这两次解析和最后的还原中,我们看这两次解析的目的就是为了拿到 url 中的 lidc_weightweight 参数。

url.Parse 和 url.ParseQuery 都是 Go 官方提供的库,各个语言也都有实现,其核心是解析 url 为一个对象,方便地获取 url 的各个部分。

如果了解信息熵这个概念,其实你就大概知道这里面一定是可以优化的。Shannon(香农) 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为信息熵

记一次提升18倍的性能优化

url.Parse 和 url.ParseQuery 在这个场景下解析肯定存在冗余,冗余意味着 CPU 在做多余的事情。

因为一个 Dubbo url 参数通常是很多的,我们只需要拿这两个参数,而 url.Parse 解析了所有的参数。

举个例子,给定一个数组,求其中的最大值,如果先对数组进行排序,再取最大值显然是存在冗余操作的。

排序后的数组不仅能取最大值,还能取第二大值、第三大值...最小值,信息存在冗余了,所以先排序肯定不是求最大值的最优解。

优化

优化获取 url 参数性能

第一想法是,不要解析全部 url,只拿相应的参数,这就很像我们写的算法题,比如获取 weight 参数,它只可能是这两种情况(不存在 #,所以简单很多):

  • dubbo://127.0.0.1:20880/org.newboo.basic.MyDemoService?weight=100&...
  • dubbo://127.0.0.1:20880/org.newboo.basic.MyDemoService?xx=yy&weight=100&...

要么是 &weight=,要么是 ?weight=,结束要么是&,要么直接到字符串尾,代码就很好写了,先手写个解析参数的算法:

func GetUrlQueryParam(u string, key string) (string, error) {
    sb := strings.Builder{}
    sb.WriteString(key)
    sb.WriteString("=")
    index := strings.Index(u, sb.String())
    if (index == -1) || (index+len(key)+1 > len(u)) {
        return "", UrlParamNotExist
    }

    var value = strings.Builder{}
    for i := index + len(key) + 1; i < len(u); i++ {
        if i+1 > len(u) {
            break
        }
        if u[i:i+1] == "&" {
            break
        }
        value.WriteString(u[i : i+1])
    }
    return value.String(), nil
}

原先获取参数的方法可以摘出来:

func getParamByUrlParse(ur string, key string) string {
    u, err := url.Parse(ur)
    if err != nil {
        return ""
    }

    values, err := url.ParseQuery(u.RawQuery)
    if err != nil {
        return ""
    }

    return values.Get(key)
}

先对这两个函数进行 benchmark:

func BenchmarkGetQueryParam(b *testing.B) {
    for i := 0; i < b.N; i++ {
        getParamByUrlParse(u, "anyhost")
        getParamByUrlParse(u, "version")
        getParamByUrlParse(u, "not_exist")
    }
}

func BenchmarkGetQueryParamNew(b *testing.B) {
    for i := 0; i < b.N; i++ {
        GetUrlQueryParam(u, "anyhost")
        GetUrlQueryParam(u, "version")
        GetUrlQueryParam(u, "not_exist")
    }
}

Benchmark 结果如下:

BenchmarkGetQueryParam-4          103412              9708 ns/op
BenchmarkGetQueryParam-4          111794              9685 ns/op
BenchmarkGetQueryParam-4          115699              9818 ns/op
BenchmarkGetQueryParamNew-4      2961254               409 ns/op
BenchmarkGetQueryParamNew-4      2944274               406 ns/op
BenchmarkGetQueryParamNew-4      2895690               405 ns/op

可以看到性能大概提升了20多倍

新写的这个方法,有两个小细节,第一是返回值中区分了参数是否存在,这个后面会用到;第二是字符串的操作用到了 strings.Builder,这也是实际测试的结果,使用 +或者 fmt.Springf 性能都没这个好,感兴趣可以测试下看看。

优化 url 写入参数性能

计算出 weight 后再把 weight 写入 url 中,这里直接给出优化后的代码:

func AssembleUrlWeightNew(rawurl string, lidcWeight int) string {
    if lidcWeight == 1 {
        return rawurl
    }

    lidcWeightStr, err1 := GetUrlQueryParam(rawurl, "lidc_weight")
    if err1 == nil && lidcWeightStr != "" {
        return rawurl
    }

    var err error
    endpointWeight := 100
    weightStr, err2 := GetUrlQueryParam(rawurl, "weight")
    if weightStr != "" {
        endpointWeight, err = strconv.Atoi(weightStr)
        if err != nil {
            endpointWeight = 100
        }
    }

    if err2 != nil { // url中不存在weight
        finUrl := strings.Builder{}
        finUrl.WriteString(rawurl)
        if strings.Contains(rawurl, "?") {
            finUrl.WriteString("&weight=")
            finUrl.WriteString(strconv.Itoa(lidcWeight * endpointWeight))
            return finUrl.String()
        } else {
            finUrl.WriteString("?weight=")
            finUrl.WriteString(strconv.Itoa(lidcWeight * endpointWeight))
            return finUrl.String()
        }
    } else { // url中存在weight
        oldWeightStr := strings.Builder{}
        oldWeightStr.WriteString("weight=")
        oldWeightStr.WriteString(weightStr)

        newWeightStr := strings.Builder{}
        newWeightStr.WriteString("weight=")
        newWeightStr.WriteString(strconv.Itoa(lidcWeight * endpointWeight))
        return strings.ReplaceAll(rawurl, oldWeightStr.String(), newWeightStr.String())
    }
}

主要就是分为 url 中是否存在 weight 两种情况来讨论:

  • url 本身不存在 weight 参数,则直接在 url 后拼接一个 weight 参数,当然要注意是否存在 ?
  • url 本身存在 weight 参数,则直接进行字符串替换

细心的你肯定又发现了,当 lidcWeight = 1 时,直接返回,因为 lidcWeight = 1 时,后面的计算其实都不起作用(Dubbo 权重默认为100),索性别操作,省点 CPU。

全部优化完,总体做一下 benchmark:

func BenchmarkAssembleUrlWeight(b *testing.B) {
    for i := 0; i < b.N; i++ {
        for _, ut := range []string{u, u1, u2, u3} {
            AssembleUrlWeight(ut, 60)
        }
    }
}

func BenchmarkAssembleUrlWeightNew(b *testing.B) {
    for i := 0; i < b.N; i++ {
        for _, ut := range []string{u, u1, u2, u3} {
            AssembleUrlWeightNew(ut, 60)
        }
    }
}

结果如下:

BenchmarkAssembleUrlWeight-4               34275             33289 ns/op
BenchmarkAssembleUrlWeight-4               36646             32432 ns/op
BenchmarkAssembleUrlWeight-4               36702             32740 ns/op
BenchmarkAssembleUrlWeightNew-4           573684              1851 ns/op
BenchmarkAssembleUrlWeightNew-4           646952              1832 ns/op
BenchmarkAssembleUrlWeightNew-4           563392              1896 ns/op

大概提升 18 倍性能,而且这可能还是比较差的情况,如果传入 lidcWeight = 1,效果更好。

效果

优化完,对改动方法写了相应的单元测试,确认没问题后,上线进行观察,CPU Idle(空闲率) 提升了10%以上

记一次提升18倍的性能优化

最后

其实本文展示的是一个 Go 程序非常常规的性能优化,也是相对来说比较简单,看完后,大家可能还有疑问:

  • 为什么要在推送和拉取的时候去解析 url 呢?不能事先算好存起来吗?
  • 为什么只优化了这点,其他的点是否也可以优化呢?

针对第一个问题,其实这是个历史问题,当你接手系统时他就是这样,如果程序出问题,你去改整个机制,可能周期比较长,而且容易出问题

记一次提升18倍的性能优化

第二个问题,其实刚也顺带回答了,这样优化,改动最小,收益最大,别的点没这么好改,短期来说,拿收益最重要。当然我们后续也打算对这个系统进行重构,但重构之前,这样优化,足以解决问题。


搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。也欢迎加我个人微信MrRoshi,围观朋友圈。

记一次提升18倍的性能优化

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这