在系统开发中,我们经常需要保护一些安全性较高的接口,限制这些接口每秒处理的请求数量。例如对于一个计算密集型接口,假设压测值是100rps, 如果实际情况长期高于这个值,则会引起滚雪球效应,最终导致系统崩溃。下面我们一起来看看如何在 Play 中实现一个完全异步非阻塞的请求限速 ?本文代码已提交至 play-community 项目,详情请参考 controllers.demo.ThrottleDemoController 。
1 实现思路
当 Controller 接收到请求时,为该请求建立一个“开关”,并且把该“开关”发送给“限速器”,"限速器"通过“开关”控制请求的处理速度。本文采用 Promise 实现“开关”,使用 Akka Stream 的 SouceQueue 实现“限速器”。
2 实现代码
2.1 开关
创建 ThrottledRequest 类,用于存放“开关”和请求到达时间,
case class ThrottledRequest(promise: Promise[Boolean], time: Long)
2.2 限速器
使用 SourceQueue 创建“限速器”,处理请求限速和请求超时,
val sourceQueue = Source .queue[ThrottledRequest](100, OverflowStrategy.backpressure) .throttle(1, 1.second, 1, ThrottleMode.shaping) .toMat(Sink.foreach{ r => // 处理未超时请求 if (System.currentTimeMillis() - r.time <= 15000) { r.promise.success(false) } else { r.promise.success(true) } })(Keep.left).run()
Source.queue 方法的声明如下,
def queue[T](bufferSize: Int, overflowStrategy: OverflowStrategy): Source[T, SourceQueueWithComplete[T]]
这里我们设置缓冲区大小为 100, 设置缓冲区溢出时的处理策略为 backpressure ,以防止请求丢失。通过 throttle 方法设置请求处理速度为 1 个每秒。 Sink 负责处理请求的放行和超时。
2.3 请求拦截
请求拦截 Action 负责拦截所有发往目标 Action 的请求,为每个请求创建“开关”并发送给“限速器”,然后只放行被“限速器”打开开关的请求,
// 只有通过限速器(sourceQueue)的请求才会被执行 def throttle[A](action: Action[A]) = Action.async(action.parser) { request => val promise = Promise[Boolean]() sourceQueue.offer(ThrottledRequest(promise, System.currentTimeMillis())) promise.future.flatMap{ isTimeout => if (!isTimeout) { action(request) } else { Future.successful(Forbidden("Timeout.")) } } }
2.4 目标 Action
目标 Action 组合了拦截 Action,代码如下,
def throttledAction = throttle { Action { implicit request: Request[AnyContent] => Ok("Finish.") }}
2.5 定义路由
GET /demo/throttle controllers.demo.ThrottleDemoController.throttledAction
3 测试实现
上面我们实现了一个限速接口,每秒只处理 1 个请求,当请求排队超过 15 秒时, 直接返回 403 响应。 我们通过下面的测试代码, 将 100 个请求瞬间发送过去,然后异步打印响应信息,
val client = buildAHCClient (1 to 100).foreach{ _ => client.prepareGet(s"http://localhost:9000/demo/throttle") .execute(new AsyncCompletionHandler[Response] { override def onCompleted(response: Response): Response = { println(s"status: ${response.getStatusCode}, time: ${DateTime.now().toString("HH:mm:ss")}") response } }) } Thread.sleep(100000) client.close()
测试结果如下:
status: 200, time: 23:22:06 status: 200, time: 23:22:07 status: 200, time: 23:22:08 status: 200, time: 23:22:09 status: 200, time: 23:22:10 status: 200, time: 23:22:11 status: 200, time: 23:22:12 status: 200, time: 23:22:13 status: 200, time: 23:22:14 status: 200, time: 23:22:15 status: 200, time: 23:22:16 status: 200, time: 23:22:17 status: 200, time: 23:22:18 status: 200, time: 23:22:19 status: 200, time: 23:22:20 status: 200, time: 23:22:21 status: 403, time: 23:22:22 status: 403, time: 23:22:23 ...
从上面可以看出,请求按照到达顺序依次被处理,从响应时间上看,目标接口确实每秒只处理 1 个请求, 并且从 23时22分22秒 开始,后面的请求均被超时处理。
4 小结
异步非阻塞代码虽然写起来有点麻烦,并且不易于调试,但是在系统性能方面收益是巨大的。在相同的系统性能指标下,异步非阻塞代码可以让硬件成本降到最低。理论上,使用异步非阻塞方式编写的系统可以在单个线程上运行,并且可以保证较高的并发性,典型例子是Node.js。Play Framework 是一个完全异步非阻塞的 Web 开发框架,相信在不久的将来在国内会越来越受欢迎。