Redis缓存穿透问题及解决方案

Stella981
• 阅读 605

上周在工作中遇到了一个问题场景,即查询商品的配件信息时(商品:配件为1:N的关系),如若商品并未配置配件信息,则查数据库为空,且不会加入缓存,这就会导致,下次在查询同样商品的配件时,由于缓存未命中,则仍旧会查底层数据库,所以缓存就一直未起到应有的作用,当并发流量大时,会很容易把DB打垮。

缓存穿透问题

缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,通常出于容错的考虑,如果从存储层查不到数据则不写入缓存层。
一般对于未命中的数据我们是按照如下方式进行处理的:

1.缓存层不命中。
2.存储层不命中,不将空结果写回缓存。
3.返回空结果。

/**
 * 缓存穿透问题:
 * 在数据库层没有查到数据,未存入缓存,
 * 则下次查询同样的数据时,还会查库。
 * 
 * @param id
 * @return
 */
private Object getObjectById(Integer id) {
    // 从缓存中获取数据
    Object cacheValue = cache.get(id);
    if (cacheValue != null) {
        return cacheValue;
    }
    // 从数据库中获取
    Object storageValue = storage.get(id);
    // 如果这里按照id查询DB为空,那么便会出现缓存穿透
    if (storageValue != null) {
        cache.set(id, storageValue);
    }
    return storageValue;
}

缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义。
缓存穿透问题可能会使后端存储负载加大,由于很多后端存储不具备高并发性,甚至可能造成后端存储宕掉。

方案一:缓存空对象

/**
 * 缓存空对象:
 * 此种方式存在漏洞,不经过判断就直接将Null对象存入到缓存中,
 * 如果恶意制造不存在的id那么,缓存中的键值就会很多,恶意攻击时,很可能会被打爆,所以需设置较短的过期时间。
 *
 * @param id
 * @return
 */
public Object getObjectInclNullById(Integer id) {
    // 从缓存中获取数据
    Object cacheValue = cache.get(id);
    // 缓存为空
    if (cacheValue != null) {
        // 从数据库中获取
        Object storageValue = storage.get(key);
        // 缓存空对象
        cache.set(key, storageValue);
        // 如果存储数据为空,需要设置一个过期时间(300秒)
        if (storageValue == null) {
            // 必须设置过期时间,否则有被攻击的风险
            cache.expire(key, 60 * 5);
        }
        return storageValue;
    }
    return cacheValue;
}

缓存空对象会有一个必须考虑的问题:

空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间(如果是攻击,问题更严重),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。

方案二:布隆过滤器拦截

布隆过滤器介绍

概念:

布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为 O(n),O(log n),O(n/k)

布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。

示例:

google guava包下有对布隆过滤器的封装,BloomFilter。

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;

public class BloomFilterTest {

    // 初始化一个能够容纳10000个元素且容错率为0.01布隆过滤器
    private static final BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), 10000, 0.01);

    /**
     * 初始化布隆过滤器
     */
    private static void initLegalIdsBloomFilter() {
        // 初始化10000个合法Id并加入到过滤器中
        for (int legalId = 0; legalId < 10000; legalId++) {
            bloomFilter.put(legalId);
        }
    }

    /**
     * id是否合法有效,即是否在过滤器中
     *
     * @param id
     * @return
     */
    public static boolean validateIdInBloomFilter(Integer id) {
        return bloomFilter.mightContain(id);
    }

    public static void main(String[] args) {
        // 初始化过滤器
        initLegalIdsBloomFilter();
        // 误判个数
        int errorNum=0;
        // 验证从10000个非法id是否有效
        for (int id = 10000; id < 20000; id++) {
            if (validateIdInBloomFilter(id)){
                // 误判数
                errorNum++;
            }
        }
        System.out.println("judge error num is : " + errorNum);
    }
}

布隆过滤器拦截

设置过期时间,让其自动过期失效,这种在很多时候不是最佳的实践方案。

我们可以提前将真实正确的商品Id,在添加完成之后便加入到过滤器当中,每次再进行查询时,先确认要查询的Id是否在过滤器当中,如果不在,则说明Id为非法Id,则不需要进行后续的查询步骤了。

/**
 * 防缓存穿透的:布隆过滤器
 * 
 * @param id
 * @return
 */
public Object getObjectByBloom(Integer id) {
    // 判断是否为合法id
    if (!bloomFilter.mightContain(id)) {
        // 非法id,则不允许继续查库
        return null;
    } else {
        // 从缓存中获取数据
        Object cacheValue = cache.get(id);
        // 缓存为空
        if (cacheValue == null) {
            // 从数据库中获取
            Object storageValue = storage.get(id);
            // 缓存空对象
            cache.set(id, storageValue);
        }
        return cacheValue;
    }
} 

参考书籍:《Redis开发与运维》

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
3A网络 3A网络
2年前
缓存三大问题及解决方案
1.缓存来由随着互联网系统发展的逐步完善,提高系统的qps,目前的绝大部分系统都增加了缓存机制从而避免请求过多的直接与数据库操作从而造成系统瓶颈,极大的提升了用户体验和系统稳定性。2.缓存问题虽然使用缓存给系统带来了一定的质的提升,但同时也带来了一些需要注意的问题。2.1缓存穿透缓存穿透是指查询一个一定不存在的数据,因为缓存中也无该数据的信息,则会
Stella981 Stella981
3年前
Redis 击穿、穿透、雪崩的解决方案
Redis击穿、穿透、雪崩的解决方案击穿和穿透场景:指的是单个key在缓存中查不到,去数据库查询(透过redis去查db叫击穿)区别:击穿:数据在数据库中真实存在,缓存丢失,大量请求击穿数据库穿透:数据在缓存中没有,数据库中也没有
Stella981 Stella981
3年前
MemCache与redis
以下内容为个人理解所得,如要转载,请标明出处:像项目中首页的大广告和商品类目这些不需要经常修改的数据,如果用户每次刷新页面的时候都要去数据库中查询,这样会浪费资源和增加数据库的压力。所以我们想当把这些数据添加到一个缓存中,用户去访问的时候,先去缓存中查找,如果命中失败,再去数据库中查询,然后把查询到的数据添加到缓存中。目前比较
Stella981 Stella981
3年前
Redis 缓存穿透、缓存雪崩的概念及其预防
缓存穿透【什么是缓存穿透】频繁查询不在缓存中的数据,给原本被缓存保护的系统过大压力。【为什么会发生缓存穿透】1\.程序没写好;2\.恶意攻击。【怎样防止缓存穿透】1\.在对key进行查询之前,先做初步判断,如果key一定不存在(例如,对某表的缓存,key一定由数字组成,那么包含非数字的key一定是不存在的
Stella981 Stella981
3年前
Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级
\TOC\Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级1、缓存雪崩  发生场景:当Redis服务器重启或者大量缓存在同一时期失效时,此时大量的流量会全部冲击到数据库上面,数据库有可能会因为承受不住而宕机  解决办法:    1)随机均匀设置失效
Stella981 Stella981
3年前
Redis缓存穿透、缓存雪崩和缓存击穿
Redis缓存穿透、缓存雪崩缓存雪崩,是指在某一个时间段,缓存集中过期失效。产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,
Stella981 Stella981
3年前
Linux玩转redis从入门到放肆
1\.缓存穿透在大多数互联网应用中,缓存的使用方式如下图所示:!(https://oscimg.oschina.net/oscnet/6a12e0fbee579fa624b2ea1738e89278c3f.png)1.当业务系统发起某一个查询请求时,首先判断缓存中是否有该数据;2.如果缓存中存在,则直接返回数据;3.如果缓存中
京东云开发者 京东云开发者
11个月前
浅谈SQL优化小技巧 | 京东云技术团队
回顾MySQL的执行过程,帮助介绍如何进行sql优化。(1)客户端发送一条查询语句到服务器;(2)服务器先查询缓存,如果命中缓存,则立即返回存储在缓存中的数据;(3)未命中缓存后,MySQL通过关键字将SQL语句进行解析,并生成一颗对应的解析树,MySQL